EINLADUNG ZUM WIENER PHYSIKALISCHEN KOLLOQUIUM

90 YEARS ON: THE LONG PATH TO MEASURING FRAME-DRAGGING

C. W. Francis EVERITT

Hansen Experimental Physics Laboratory Stanford University, Stanford, California

In 1918, Josef Lense and Hans Thirring showed that in Einstein's beautiful new theory of gravitation, general relativity, rotating matter exerts a dragging effect on the framework of space-time. They calculated the magnitudes of expected effect on satellites in orbit around rotating planets. In this lecture I describe how, finally, 90 years later, the NASA Gravity Probe B mission, launched 20 April 2004, has provided a decisive measurement of the closely related effect on gyroscopes in earth orbit, first calculated by Leonard Schiff.

The gyroscopes required a performance 10⁷ times better than the best inertial navigation gyroscopes. Developing them and the many other new technologies for the mission proved a fascinating and sometimes daunting task, including a three-way collaboration between Stanford University, aerospace industry and NASA. The contributions of students, both physics and engineering, have been extraordinarily impressive.

I shall conclude with some observations on the wider significance of the GP-B experience.

Montag, 13. Oktober 2008, 17:30 Uhr (ab 17:00 Uhr Kaffee) Großer Hörsaal für Experimentalphysik der Universität Wien Strudlhofgasse 4/1. Stock, A-1090 Wien

www.univie.ac.at/wpk

ersität