
Einladung zum

WIENER PHYSIKALISCHEN KOLLOQUIUM

www.univie.ac.at/wpk

QUBITS IN NANOSTRUCTURES

Leo KOUWENHOVEN

Kavli Institute of Nanoscience, Faculty of Applied Sciences Delft University of Technology, Netherlands

We use quantum dot structures in various solid state systems to realize controllable two-level quantum systems. We focus on spin states, either one electron doublet states (i.e. spin-up or spin-down) or two-electron singlet and triplet states. Using time-varying magnetic and electric fields we are able to manipulate the spin states, create quantum superpositions and measure individual spins.

The material systems include GaAs/AlGaAs semiconductor heterostructures, semiconducting nanowires and carbon nanotubes. These materials have their own advantages that can be employed to engineer a spin-friendly environment. These include fabrication and electrical-control issues as well as the strength of the hyperfine interaction (i.e. presence or absence of nuclear spins) and the spin-orbit interaction.

We are also investigating the feasibility of transferring local spin-qubit states into flying-qubit photon states for which we develop nanoscale quantum-LED's. Two-electron entanglement is studied by using superconducting materials as electronic leads.

Montag, 19. November 2007, 17:30 Uhr (ab 17:00 Uhr Kaffee) Technische Universität Wien, Freihaus, Hörsaal 6 (Turm A, grüner Bereich, 2. Stock) Wiedner Hauptstr. 8-10, A-1040 Wien

Universität Wien ÖPG TU Wien