The neutron capture cross section of the s-process branch point ⁶³Ni

Spokespersons: C. Lederer ¹, C. Massimi ²,

Technical Coordinator: V. Vlachoudis

M. Barbagallo, F. Belloni, E. Berthoumieux, M. Calviani, D. Cano-Ott, N. Colonna,
I. Dillmann, K. Fraval, C. Guerrero, F. Gunsing, F. Käppeler, A. Mengoni,
G. Tagliente, J.L. Tain, A. Wallner, and the n_TOF Collaboration

¹ Faculty of Physics, University of Vienna;

² Dipartimento di Fisica, Università di Bologna and INFN Sezione di Bologna;

MOTIVATION

Motivation

• How are heavy elements formed (>Fe) ?

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Motivation

- How are heavy elements formed (>Fe) ?
- dominantly via neutron capture reactions

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Motivation

- How are heavy elements formed (>Fe) ?
- dominantly via neutron capture reactions

slow neutron capture (s-process)

rapid neutron capture (r-process)

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Neutron capture processes

slow neutron capture (s-process)

- AGB stars, massive stars
- $\tau_{n,\gamma}$ (~1 yr) > $t_{1/2}$
- N_n~10⁸ cm⁻³
- close to valley of stability
- nuclear physics input: $<\sigma_{n,\gamma}>$, $t_{1/2}$

rapid neutron capture (r-process)

- explosive scenarios
- $\tau_{n,\gamma} (10^{-4} s) < t_{1/2}$
- N_n~10²¹ cm⁻³
- far from valley of stability

these 2 processes can explain almost all isotopic signatures !!

F. Käppeler, A. Mengoni, Nucl. Phys. A **777** (2006)

Neutron capture processes

slow neutron capture (s-process)

- AGB stars, massive stars
- $\tau_{n,v}$ (~1 yr) > $t_{1/2}$
- N_n~10⁸ cm⁻³
- close to valley of stability
- nuclear physics input: $<\sigma_{n,\gamma}>$

rapid neutron capture (r-process)

- explosive scenarios
- $\tau_{n,\nu}$ (10⁻⁴s) < $t_{1/2}$
- N₋~10²¹

Maxwellian Averaged Cross Section (MACS)

$$<\sigma>_{kT}=\frac{2}{\sqrt{\pi}}\frac{\int \sigma(E_n)E_n\exp(-E_n/kT)dE_n}{\int E_n\exp(-E_n/kT)dE_n}$$

these 2 processes can explain almost all isotopic signatures !!

s-process

- main s-process: Zr < A < Bi
- in thermally pulsing AGB stars after He core burning (1-3 M_{\odot}); kT= 8 keV, 23 keV
- Local equilibrium N< $\sigma_{n,v}$ >=const. between neutron shell closures

F. Käppeler, Prog. Part. Nucl. Phys. 43 (1999)

s-process

- main s-process: Zr < A < Bi
- in thermally pulsing AGB stars after He core burning (1-3 M_{\odot}); kT= 8 keV, 23 keV
- Local equilibrium N< $\sigma_{n,v}$ >=const. between neutron shell closures

F. Käppeler, Prog. Part. Nucl. Phys. 43 (1999)

- weak s-process: additional component for Fe < A < Zr
- in massive stars (> 8 M_{\odot}); kT= 25 keV, 91 keV
- neutron fluence too small for equilibrium

Propagation effect of cross section: ⁶²Ni(n,γ)

Propagation effect of cross section: $^{62}Ni(n,\gamma)$

- capture cross section influences abundances of all following isotopes up to A~90 !
- MACS needed up to ~100 keV !

The case of ⁶³Ni

- t_{1/2}=100.1 yr
- decay: β^{-} to 63 Cu (no γ -emission \rightarrow no radioactive background)
- t_{1/2} reduced under stellar conditions → for kT=91 keV, t_{1/2}= 0.4 yr ! (Pignatari et al. Ap.J. **710** (2010))

The case of ⁶³Ni

- t_{1/2}=100.1 yr
- decay: β^{-} to 63 Cu (no γ -emission \rightarrow no radioactive background)
- t_{1/2} reduced under stellar conditions → for kT=91 keV, t_{1/2}= 0.4 yr ! (Pignatari et al. Ap.J. **710** (2010))

core He burning, kT=25 keV, $N_n \sim 10^6 \text{ cm}^{-3}$

C shell burning, kT=91 keV, $N_n \sim 10^{11}$ cm⁻³

The case of ⁶³Ni

- t_{1/2}=100.1 yr
- decay: β^{-} to 63 Cu (no γ -emission \rightarrow no radioactive background)
- t_{1/2} reduced under stellar conditions → for kT=91 keV, t_{1/2}= 0.4 yr ! (Pignatari et al. Ap.J. **710** (2010))

core He burning, kT=25 keV, $N_n \sim 10^6 \text{ cm}^{-3}$

C shell burning, kT=91 keV, $N_n \sim 10^{11} \text{ cm}^{-3}$

Present situation on ^{63}Ni(n,\gamma)

- measurements so far ONLY at thermal energies
- MACS are based on extrapolation of these cross sections → theoretical assumptions could be affected by big uncertainties

⁶³Ni cross section according to calculations:

This work: estimate of cross section by generating artificial set of resonances:

- fixed statistical properties of level spacing, neutron widths and gamma widths
- neutron strength functions and reaction widths close to exp. values of ⁶²Ni (small variations for different Ni isotopes)
- procedure tested on stable Ni isotopes

Present situation on ⁶³Ni(n,γ)

- measurements so far ONLY at thermal energies
- MACS are based on extrapolation of these cross sections → theoretical assumptions could be affected by big uncertainties
- MACS at 30 keV:

this work:	90.8 mb
TENDL(2009):	68.9 mb
KADoNiS:	31±6 mb

MEASUREMENT & BEAM TIME REQUEST

⁶³Ni sample

- 3 metal discs (2 foils produced 1984, 1 foil produced 1992)
- total mass: 955 mg
- diameter: 10 mm
- enrichment in ⁶³Ni: 11.7 % (= 112 mg)
- contaminants: 18.3 mg ⁶³Cu → will be removed chemically at PSI

Special suitability of n_TOF because of.....

 high intensity neutron pulses → background uncorrelated with neutron beam very small

- 185 m flight path → good energy resolution also at high neutron energies
- C₆D₆ detector setup optimized for low neutron efficiency → minimized background due to neutron scattering
- upgrade in DAQ allows measuring thermal point
- ⁶²Ni capture yield already measured at n_TOF in 2009

Count rate estimate

based on calculated cross section described before

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Count rate estimate

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Beam Time Request

- 112 mg ⁶³Ni in sample
- 2009 campaign \rightarrow 2 g of ⁶²Ni and 2x10¹⁸ protons
- ⁶³Ni mass 20 times smaller BUT cross section higher according to calculations + reduced resolution acceptable
- less background at high neutron energies due to borated water → remeasurement of ⁶²Ni for background determination
- runs with Au (normalization) and C (neutron scattering background) necessary

Beam Time Request

- 112 mg ⁶³Ni in sample
- 2009 campaign \rightarrow 2 g of ⁶²Ni and 2x10¹⁸ protons
- ⁶³Ni mass 20 times smaller BUT cross section higher according to calculations + reduced resolution acceptable
- less background at high neutron energies due to borated water → remeasurement of ⁶²Ni for background determination
- runs with Au (normalization) and C (neutron scattering background) necessary

Summary

• ⁶³Ni represents the first branching point of the s-process path and knowledge of its (n,γ) cross section is of great importance for nuclear astrophysics

- there are no experimental data of the $^{63}Ni(n,\gamma)$ cross section above thermal
- unique ⁶³Ni sample suitable for a time-of-flight measurement is available
- combining a high neutron flux with a long flight path and an optimized detection setup, n_TOF is perfectly suited for performing this important measurement
- we propose 5x10¹⁸ protons for this measurement

Thank you for your attention !