The neutron capture cross section of the s-process branch point ⁶³Ni

Spokespersons: C. Lederer ¹ , C. Massimi ² ,

Technical Coordinator: V. Vlachoudis

M. Barbagallo, F. Belloni, E. Berthoumieux, M. Calviani, D. Cano-Ott, N. Colonna, I. Dillmann, K. Fraval, C. Guerrero, F. Gunsing, F. Käppeler, A. Mengoni, G. Tagliente, J.L. Tain, A. Wallner, and the **n_TOF Collaboration**

¹ Faculty of Physics, University of Vienna;

² Dipartimento di Fisica, Università di Bologna and INFN Sezione di Bologna;

MOTIVATION

Motivation

• How are heavy elements formed (>Fe) ?

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Motivation

- How are heavy elements formed (>Fe)?
- dominantly via neutron capture reactions

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Motivation

- How are heavy elements formed (>Fe) ?
- dominantly via neutron capture reactions

slow neutron capture (s-process) rapid neutron capture (r-process)

Claudia Lederer - 38th Meeting of INTC – 4th November 2010

Neutron capture processes

slow neutron capture (s-process)

- AGB stars, massive stars
- $\tau_{n,\gamma}$ (~1 yr) > $t_{1/2}$
- N_n ~10⁸ cm⁻³
- close to valley of stability
- nuclear physics input: $<\sigma_{n,y}$, $t_{1/2}$

rapid neutron capture (r-process)

- explosive scenarios
- $\tau_{n,\gamma}$ (10⁻⁴s) < $t_{1/2}$
- N_n ~10²¹ cm⁻³
- far from valley of stability

these 2 processes can explain almost all isotopic signatures !!

F. Käppeler, A. Mengoni, Nucl. Phys. A **777** (2006)

Neutron capture processes

slow neutron capture (s-process)

- AGB stars, massive stars
- $\tau_{n,\gamma}$ (~1 yr) > $t_{1/2}$
- N_n ~10⁸ cm⁻³
- close to valley of stability
- nuclear physics input: $<\sigma_{n,\gamma}>$

- explosive scenarios
- $\tau_{n,\gamma}$ (10⁻⁴s) < $t_{1/2}$
- N_n \sim 10²¹

ran *f* from you of soo soond. **Maxwellian Averaged Cross Section (MACS**)

$$
\sigma >_{kT} = \frac{2}{\sqrt{\pi}} \frac{\int \sigma(E_n) E_n \exp(-E_n / kT) dE_n}{\int E_n \exp(-E_n / kT) dE_n}
$$

these 2 processes can explain almost all isotopic signatures !!

F. Käppeler, A. Mengoni, Nucl. Phys. A **777** (2006)

s-process

- **main s-process**: Zr < A < Bi
- in thermally pulsing AGB stars after He core burning (1-3 M_{\odot}); kT= 8 keV, 23 keV
- Local equilibrium $N < \sigma_{n,y} >$ =const. between neutron shell closures

F. Käppeler, Prog. Part. Nucl. Phys. 43 (1999)

s-process

- **main s-process**: Zr < A < Bi
- in thermally pulsing AGB stars after He core burning (1-3 M_{\odot}); kT= 8 keV, 23 keV
- Local equilibrium $N < \sigma_{n,v}$ = const. between neutron shell closures

F. Käppeler, Prog. Part. Nucl. Phys. 43 (1999)

- **weak s-process:** additional component for Fe < A < Zr
- in massive stars (> 8 M_o); kT= 25 keV, 91 keV
- neutron fluence too small for equilibrium

Propagation effect of cross section: ⁶²Ni(n,)

Propagation effect of cross section: ⁶²Ni(n,)

- capture cross section influences abundances of all following isotopes up to A~90 !
- MACS needed up to ~100 keV!

The case of ⁶³Ni

- $t_{1/2}$ =100.1 yr
- decay: β ⁻ to ⁶³Cu (no γ -emission \rightarrow no radioactive background)
- $t_{1/2}$ reduced under stellar conditions \rightarrow for kT=91 keV, $t_{1/2}=0.4$ yr ! (Pignatari et al. Ap.J. **710** (2010))

The case of ⁶³Ni

- $t_{1/2}$ =100.1 yr
- decay: β ⁻ to ⁶³Cu (no γ -emission \rightarrow no radioactive background)
- $t_{1/2}$ reduced under stellar conditions \rightarrow for kT=91 keV, $t_{1/2}=0.4$ yr ! (Pignatari et al. Ap.J. **710** (2010))

core He burning, kT=25 keV, N_n ~10⁶ cm⁻³

C shell burning, kT=91 keV, N_n ~10¹¹ cm⁻³

The case of ⁶³Ni

- $t_{1/2}$ =100.1 yr
- decay: β ⁻ to ⁶³Cu (no γ -emission \rightarrow no radioactive background)
- $t_{1/2}$ reduced under stellar conditions \rightarrow for kT=91 keV, $t_{1/2}=0.4$ yr ! (Pignatari et al. Ap.J. **710** (2010))

core He burning, kT=25 keV, N_n ~10⁶ cm⁻³

C shell burning, kT=91 keV, N_n ~10¹¹ cm⁻³

Present situation on ⁶³Ni(n,)

- measurements so far ONLY at thermal energies
- MACS are based on extrapolation of these cross sections \rightarrow theoretical assumptions could be affected by big uncertainties

⁶³Ni cross section according to calculations:

•

This work: estimate of cross section by generating artificial set of resonances:

- fixed statistical properties of level spacing, neutron widths and gamma widths
- neutron strength functions and reaction widths close to exp. values of ⁶²Ni (small variations for different Ni isotopes)
- procedure tested on stable Ni isotopes

Present situation on 63 **Ni(n,y)**

- measurements so far ONLY at thermal energies
- MACS are based on extrapolation of these cross sections \rightarrow theoretical assumptions could be affected by big uncertainties
- MACS at 30 keV:

MEASUREMENT & BEAM TIME REQUEST

⁶³Ni sample

- 3 metal discs (2 foils produced 1984, 1 foil produced 1992)
- total mass: 955 mg
- diameter: 10 mm
- enrichment in 63 Ni: 11.7 % (= 112 mg)
- contaminants: 18.3 mg $63Cu \rightarrow$ will be removed chemically at PSI

Special suitability of n_TOF because of.....

- high intensity neutron pulses \rightarrow background uncorrelated with neutron beam very small
- \cdot 185 m flight path \rightarrow good energy resolution also at high neutron energies
- C_6D_6 detector setup optimized for low neutron efficiency \rightarrow minimized background due to neutron scattering
- upgrade in DAQ allows measuring thermal point
- ⁶²Ni capture yield already measured at n_TOF in 2009

Count rate estimate

Count rate estimate

• based on calculated cross section described before

Beam Time Request

- 112 mg ⁶³Ni in sample
- 2009 campaign \rightarrow 2 g of ⁶²Ni and 2x10¹⁸ protons
- ⁶³Ni mass 20 times smaller BUT cross section higher according to calculations + reduced resolution acceptable
- less background at high neutron energies due to borated water \rightarrow remeasurement of ⁶²Ni for background determination
- runs with Au (normalization) and C (neutron scattering background) necessary

Beam Time Request

- 112 mg ⁶³Ni in sample
- 2009 campaign \rightarrow 2 g of ⁶²Ni and 2x10¹⁸ protons
- ⁶³Ni mass 20 times smaller BUT cross section higher according to calculations + reduced resolution acceptable
- less background at high neutron energies due to borated water \rightarrow remeasurement of ⁶²Ni for background determination
- runs with Au (normalization) and C (neutron scattering background) necessary

Summary

• ⁶³Ni represents the first branching point of the s-process path and knowledge of its (n, y) cross section is of great importance for nuclear astrophysics

- there are no experimental data of the $63Ni(n,y)$ cross section above thermal
- unique ⁶³Ni sample suitable for a time-of-flight measurement is available
- combining a high neutron flux with a long flight path and an optimized detection setup, n_TOF is perfectly suited for performing this important measurement
- we propose 5x10¹⁸ protons for this measurement

Thank you for your attention !