New measurement of the 62Ni(n, γ**) cross-section with n_TOF at CERN**

Claudia Lederer

VERA-Laboratory, Faculty of Physics, University of Vienna

on behalf of the **n_TOF Collaboration** www.cern.ch/ntof

Nucleosynthesis in stars beyond Fe:

• neutron capture reactions

niversität

- slow neutron capture (s-process)
- rapid neutron capture (r-process)

F. Käppeler, A. Mengoni, Nucl. Phys. A **777** (2006)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)

Sneden et al. APJ533 (2000)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)
- determination of r-process residuals via

rs $N_{_F} = N_{\odot}$ - $N_{_S}$

Sneden et al. APJ533 (2000)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)
- determination of r-process residuals via

Sneden et al. APJ533 (2000)

nuclear physics input: T_{1/2}, σ(n,γ)

niversität

Motivation

Bao et al. (2000)

universität

High uncertainties of (n, γ) cross-sections in medium mass region directly enter into r-process calculations.

Motivation

Bao et al. (2000)

High uncertainties of (n, γ) cross-sections in medium mass region directly enter into r-process calculations.

Neutron capture cross-section of 62Ni influences abundance of following isotopes up to A=90 !

Nassar et al. (2005)

Motivation

High uncertainties of (n, γ) cross-sections in medium mass region directly enter into r-process calculations.

Campaign to measure capture cross-sections of all stable isotopes of Fe and Ni at n_TOF

Neutron capture cross-section of 62Ni influences abundance of following isotopes up to A=90 !

 M_A Ω Ω Ω Ω Ω Ω

Nassar et al. (2005)

detectorγ γ nsample

Extract cross-section by determining **reaction-yield YR (En)**:

$$
Y_R = \frac{C - B}{\varepsilon \cdot f \cdot \Phi}
$$

$$
Y_R \cong (1 - e^{-n\sigma_{tot}}) \frac{\sigma_R}{\sigma_{tot}}
$$

62Ni+n \rightarrow 63Ni* \rightarrow 63Ni + γ

Extract cross-section by determining reaction-yield Y_R((E_n);

En ...neutron energy Æ**time-of-flight**

62Ni+n \rightarrow 63Ni* \rightarrow 63Ni + γ

detectorγ γ nsample

Extract cross-section by determining reaction-yield $Y_R(E_n)$:

E_n...neutron energy → time-of-flight

 $\mathbf{C}....$ countrate → liquid scintillation detectors with low **neutron sensitivity**

⁶²Ni+n \rightarrow ⁶³Ni* \rightarrow ⁶³Ni + γ

detectorγ γ nsample

Extract cross-section by determining **reaction-yield YR (En)**:

En ...neutron energy Æ**time-of-flight**

C....countrate Æ **liquid scintillation detectors with low neutron sensitivity**

^ε**.....efficiency** Æ **Pulse-Height-Weighting**

62Ni+n \rightarrow 63Ni* \rightarrow 63Ni + γ

detectorγ γ nsample

Extract cross-section by determining **reaction-yield YR (En)**:

$$
Y_R = \frac{C-B}{\varepsilon \mathcal{D} \Phi}
$$

En ...neutron energy Æ**time-of-flight**

C....countrate Æ **liquid scintillation detectors with low neutron sensitivity**

^ε**.....efficiency** Æ **Pulse-Height-Weighting**

f.....fraction of beam covering sample Æ **run with Au**

62Ni+n \rightarrow 63Ni* \rightarrow 63Ni + γ

detectorγ γ nsample

Extract cross-section by determining **reaction-yield YR (En)**:

En ...neutron energy Æ**time-of-flight**

C....countrate Æ **liquid scintillation detectors with low neutron sensitivity**

^ε**.....efficiency** Æ **Pulse-Height-Weighting**

f.....fraction of beam covering sample Æ **run with Au**

Φ**....neutron flux**Æ**neutron detectors**

niversität

detectorγ γ nsample

Extract cross-section by determining **reaction-yield YR (En)**:

En ...neutron energy Æ**time-of-flight**

C....countrate Æ **liquid scintillation detectors with low neutron sensitivity**

^ε**.....efficiency** Æ **Pulse-Height-Weighting**

f.....fraction of beam covering sample Æ **run with Au**

Φ**....neutron flux**Æ**neutron detectors**

B....background Æ**dedicated runs**

62Ni+n \rightarrow 63Ni* \rightarrow 63Ni + γ

niversität

Experimental setup: n_TOF facility at CERN

20 GeV/c protons on Pb-target Pulse width: 7 nsIntensity: $7 \cdot 10^{12}$ protons per pulse

Flight path: 185 m Neutron energy: 10⁻³-10¹⁰ eV Beam size at capture setup: Ø~4 cm

2 setups for capture measurements:

- total absorption calorimeter: 4π geometry (ε~100%)
- two C₆D₆ detectors

Experimental setup: n_TOF facility at CERN

C₆D₆ setup:

- detectors optimized for low neutron sensitivity $(\epsilon_n / \epsilon \ll 4.10^{-5})$ [Plag et al., 2002]
- remotely controllable sample exchanger

Samples for 62Ni measurement:

enriched Ni pellet; $2 \text{ cm } \varnothing$; 2 g

- 197 Au, 2 cm \varnothing , 0.6 g
- $-$ natPb, 2 cm \varnothing , 0.3 g
- natC, 2 cm \varnothing , 5 g

Background

Components

- Neutron scattering (< 200 eV)
- γ− scattering (200 eV 200 keV)
- Inelastic neutron-scattering: limits higher neutron energy to about 1 MeV

Background

Components

- **Neutron scattering (< 200 eV)**
- **-** γ− **scattering (200 eV 200 keV)**
- Inelastic neutron-scattering: limits higher neutron energy to about 1 MeV

MACS at 30 keV

• **prompt** γ**-detection**:

Beer and Spencer (1975): 26.8 ± 5.0 mb Tomyo et al. (2005) : 37.0 ± 3.2 mb

Alpizar-Vicente et al. (2008) : 25.8 ± 3.7 mb

• **activation followed by Accelerator-Mass-Spectrometry (AMS)**

• **evaluations:**

niversität

Bao and Käppeler (1987): 35.5 ± 4.0 mb Bao et al. (2000) : 12.5 ± 4.0 mb Rauscher and Guber $(2002):10.6 \pm 0.8$ mb

Maxwellian-averaged cross sections

*extrapolated from 25 keV

previous measurements

(figure by I. Dillmann)

previous measurements

(figure by I. Dillmann)

new data from n_TOF

Summary

- last year, measurement of ${}^{56}Fe(n,\gamma)$ and ${}^{62}Ni(n,\gamma)$ sucessfully finished at n_TOF, now data taking for $54Fe(n,\gamma)$
- data analysis in progress \rightarrow new and precise data ante portas
- preliminary results for 62 Ni(n, γ) show unique energy resolution

THANKS TO:

- n_TOF collaboration
- Austrian Science fund (FWF)
- EFNUDAT (European Facilities for nuclear data measurements)
- H. Danninger and C. Gierl (Vienna University of Technology) for preparing the Ni sample

Der Wissenschaftsfonds.

and you for your attention!