New measurement of the ⁶²Ni(n,γ) cross-section with n_TOF at CERN

Claudia Lederer

VERA-Laboratory, Faculty of Physics, University of Vienna

on behalf of the **n_TOF Collaboration** www.cern.ch/ntof

Nucleosynthesis in stars beyond Fe:

- neutron capture reactions
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

F. Käppeler, A. Mengoni, Nucl. Phys. A 777 (2006)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)

Sneden et al. APJ533 (2000)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)
- determination of r-process residuals via

 $N_r = N_{\odot} - N_s$

Sneden et al. APJ533 (2000)

Nucleosynthesis in stars beyond Fe:

- neutron capture reactiond
- slow neutron capture (s-process)
- rapid neutron capture (r-process)

Observation of old halo star CS22892-052:

- A>120: scales with solar r-residuals
- A<120: systematically lower (Sneden et al.)
- determination of r-process residuals via

Sneden et al. APJ533 (2000)

nuclear physics input: $T_{1/2}$, $\sigma(n,\gamma)$

Motivation

Bao et al. (2000)

universität

High uncertainties of (n,γ) cross-sections in medium mass region directly enter into r-process calculations.

Motivation

Bao et al. (2000)

High uncertainties of (n,γ) cross-sections in medium mass region directly enter into r-process calculations.

Neutron capture cross-section of ⁶²Ni influences abundance of following isotopes up to A=90 !

Nassar et al. (2005)

Motivation

High uncertainties of (n,γ) cross-sections in medium mass region directly enter into r-process calculations.

Campaign to measure capture cross-sections of all stable isotopes of Fe and Ni at n_TOF

cross-section of ⁶²Ni influences abundance of following isotopes up to A=90 !

Nassar et al. (2005)

n γ sample γ detector Extract cross-section by determining **reaction-yield Y**_R (E_n):

$$Y_{R} = \frac{C - B}{\varepsilon \cdot f \cdot \Phi}$$

$$Y_R \cong (1 - e^{-n\sigma_{tot}}) \frac{\sigma_R}{\sigma_{tot}}$$

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

sample \mathbf{v} n detector Extract cross-section by determining reaction-yield Y_R(E_n);

$$Y_{R} = \frac{C - B}{\varepsilon \cdot f \cdot \Phi}$$

 E_n ...neutron energy \rightarrow time-of-flight

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

n γ sample γ detector Extract cross-section by determining **reaction-yield Y**_R (E_n):

E_n...neutron energy →time-of-flight

C....countrate \rightarrow liquid scintillation detectors with low neutron sensitivity

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

n γ sample γ detector Extract cross-section by determining **reaction-yield Y**_R (E_n):

E_n...neutron energy →time-of-flight

C....countrate \rightarrow liquid scintillation detectors with low neutron sensitivity

 ϵefficiency \rightarrow Pulse-Height-Weighting

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

n γ sample γ detector Extract cross-section by determining **reaction-yield Y**_R (E_n):

E_n...neutron energy →time-of-flight

C....countrate \rightarrow liquid scintillation detectors with low neutron sensitivity

 ϵefficiency \rightarrow Pulse-Height-Weighting

f.....fraction of beam covering sample \rightarrow run with Au

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

sample n detector Extract cross-section by determining **reaction-yield Y**_R (E_n):

E_n...neutron energy →time-of-flight

C....countrate \rightarrow liquid scintillation detectors with low neutron sensitivity

 ϵefficiency \rightarrow Pulse-Height-Weighting

f.....fraction of beam covering sample \rightarrow run with Au

 Φneutron flux \rightarrow neutron detectors

 62 Ni+n $\rightarrow ^{63}$ Ni* $\rightarrow ^{63}$ Ni + γ

sample n detector Extract cross-section by determining reaction-yield Y_R (E_n):

E_n...neutron energy →time-of-flight

C....countrate \rightarrow liquid scintillation detectors with low neutron sensitivity

 ϵefficiency \rightarrow Pulse-Height-Weighting

f.....fraction of beam covering sample \rightarrow run with Au

 Φneutron flux \rightarrow neutron detectors

 ${}^{62}\text{Ni+n} \rightarrow {}^{63}\text{Ni}^* \rightarrow {}^{63}\text{Ni} + \gamma$

niversität

B....background →dedicated runs

Experimental setup: n_TOF facility at CERN

20 GeV/c protons on Pb-target Pulse width: 7 ns Intensity: $7 \cdot 10^{12}$ protons per pulse

Flight path: 185 m Neutron energy: 10^{-3} - 10^{10} eV Beam size at capture setup: Ø~4 cm

2 setups for capture measurements:

- total absorption calorimeter: 4π geometry (ε~100%)
- two C₆D₆ detectors

Experimental setup: n_TOF facility at CERN

C₆D₆ setup:

- detectors optimized for low neutron sensitivity $(\epsilon_n/\epsilon_\gamma < 4.10^{-5})$ [Plag et al., 2002]
- remotely controllable sample exchanger

Samples for ⁶²Ni measurement:

enriched Ni pellet; 2 cm Ø; 2 g

	⁵⁸ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶⁴ Ni
sample (%)	0.005	0.035	0.91	97.95	1.1
natural (%)	68.08	26.22	1.14	3.63	0.93

- ¹⁹⁷Au, 2 cm Ø, 0.6 g
- ^{nat}Pb, 2 cm Ø, 0.3 g
- ^{nat}C, 2 cm Ø, 5 g

Background

Components

- Neutron scattering (< 200 eV)
- γ scattering (200 eV 200 keV)
- Inelastic neutron-scattering: limits higher neutron energy to about 1 MeV

Background

Components

- Neutron scattering (< 200 eV)
- γ- scattering (200 eV 200 keV)
- Inelastic neutron-scattering: limits higher neutron energy to about 1 MeV

MACS at 30 keV

prompt γ-detection:

Beer and Spencer (1975): 26.8 ± 5.0 mb

Tomyo et al. (2005): $37.0 \pm 3.2 \text{ mb}$

Alpizar-Vicente et al. (2008): 25.8 ± 3.7 mb

activation followed by Accelerator-Mass-Spectrometry (AMS)

Nassar et al. (2005):	26.1 ± 2.6 mb*
Dillmann et al. (2010):	23.4 ± 4.6 mb

evaluations:

niversität

Bao and Käppeler (1987): $35.5 \pm 4.0 \text{ mb}$ Bao et al. (2000): $12.5 \pm 4.0 \text{ mb}$ Rauscher and Guber (2002):10.6 $\pm 0.8 \text{ mb}$

Maxwellian-averaged cross sections

*extrapolated from 25 keV

previous measurements

(figure by I. Dillmann)

previous measurements

(figure by I. Dillmann)

new data from n_TOF

Summary

- last year, measurement of ⁵⁶Fe(n,γ) and ⁶²Ni(n,γ) successfully finished at n_TOF, now data taking for ⁵⁴Fe(n,γ)
- data analysis in progress → new and precise data ante portas
- preliminary results for ⁶²Ni(n,γ) show unique energy resolution

THANKS TO:

- n_TOF collaboration
- Austrian Science fund (FWF)
- EFNUDAT (European Facilities for nuclear data measurements)
- H. Danninger and C. Gierl (Vienna University of Technology) for preparing the Ni sample

Der Wissenschaftsfonds.

and you for your attention!