⁵³Mn – a long-lived activation product in a fusion environment

C. Lederer^a, A. Wallner^a, I. Dillmann^b, T. Faestermann^b, A. Klix^c, G. Korschinek^b, J. Lachner^b, M. Poutivtsev^b, G. Rugel^b, K. Seidel^c, and H. Vonach^a

^aIsotopenforschung und Kernphysik, Fakultät für Physik, Universität Wien ^bPhysik Department, Technische Universität München ^cInst. f. Kern- und Teilchenphysik, TU Dresden und Forschungszentrum Dresden-Rossendorf

Reaction:

 $t + d \rightarrow \alpha(3.56 \text{ MeV}) + n(14.03 \text{ MeV})$

http://ec.europa.eu/commission_barroso/potocnik/imag es/dossier/iter.jpg

Reaction:

universität

vien

 $t + d \rightarrow \alpha(3.56 \text{ MeV}) + n(14.03 \text{ MeV})$

http://ec.europa.eu/commission_barroso/potocnik/imag es/dossier/iter.jpg

Isotope

Half-life (y)

Reaction

Reaction:

wien

 $t + d \rightarrow \alpha(3.56 \text{ MeV}) + n(14.03 \text{ MeV})$

Isotope

Half-life (y)

Reaction

Reaction:

wien

 $t + d \rightarrow \alpha(3.56 \text{ MeV}) + n(14.03 \text{ MeV})$

Available data for ⁵⁴Fe(n,np+d)⁵³Mn cross-sections

http://www-nds.iaea.org/

 Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

$$N_{{}^{53}\mathrm{Mn}} = N_{{}^{54}\mathrm{Fe}} \cdot \phi \cdot \sigma(E_{\mathrm{n}}) \cdot f$$

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

$$N_{53}_{\text{Mn}} = N_{54}_{\text{Fe}} \cdot \phi \cdot \sigma(E_{n}) \cdot f$$
$$\rightarrow \sigma(E_{n}) = \frac{N_{53}_{\text{Mn}}}{N_{55}_{\text{Mn}}} \frac{N_{55}_{\text{Mn}}}{N_{54}_{\text{Fe}}} \frac{1}{\phi \cdot f}$$

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

$$N_{53}_{Mn} = N_{54}_{Fe} \cdot \phi \cdot \sigma(E_n) \cdot f$$

$$\rightarrow \sigma(E_n) = \underbrace{\frac{N_{53}_{Mn}}{N_{55}_{Mn}}}_{N_{55}_{Mn}} \underbrace{\frac{N_{55}_{Mn}}{N_{54}_{Fe}}}_{N_{54}_{Fe}} \frac{1}{\phi \cdot f}$$

AMS

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

$$N_{53}_{Mn} = N_{54}_{Fe} \cdot \phi \cdot \sigma(E_n) \cdot f$$

$$\rightarrow \sigma(E_n) \underbrace{ \left(\frac{N_{53}_{Mn}}{N_{55}_{Mn}} \frac{N_{55}_{Mn}}{N_{54}_{Fe}} \frac{1}{\phi \cdot f} \right)}_{MN}$$

AMS mass measurement

- Irradiation of highly enriched ⁵⁴Fe with quasi-monoenergetic neutrons from 13-15 MeV at FZD
- Adding stable ⁵⁵Mn as spike
- Chemical removal of Fe and other impurities from sample
- Measurement of ⁵³Mn / ⁵⁵Mn with AMS at MLL Munich

$$N_{53}_{Mn} = N_{54}_{Fe} \cdot \phi \cdot \sigma(E_n) \cdot f$$

$$\rightarrow \sigma(E_n) \underbrace{N_{53}_{Mn}}_{N_{55}_{Mn}} \underbrace{N_{55}_{Mn}}_{N_{54}_{Fe}} \underbrace{1}_{Po} f$$

AMS mass measurement monitor reactions

Neutron Irradiations

Neutron Irradiations

- Neutron generator at Forschungszentrum Dresden: t(d,n)⁴He
- 11 positions with ¹³C, ¹⁴N, ⁵⁴Fe, ^{nat}Fe samples
- 4 positions for ⁵⁴Fe(n,np+d) ⁵³Mn

Neutron Irradiations

- Neutron generator at Forschungszentrum Dresden: t(d,n)⁴He
- 11 positions with ¹³C, ¹⁴N, ⁵⁴Fe, ^{nat}Fe samples
- 4 positions for ⁵⁴Fe(n,np+d) ⁵³Mn

A. Wallner, 2000

universität

Neutron Irradiations

- Neutron generator at Forschungszentrum Dresden: t(d,n)⁴He
- 11 positions with ¹³C, ¹⁴N, ⁵⁴Fe, ^{nat}Fe samples
- 4 positions for ⁵⁴Fe(n,np+d) ⁵³Mn

(AMS....Accelerator Mass Spectrometry)

⁵³Mn/⁵⁵Mn measurements with AMS

(AMS....Accelerator Mass Spectrometry)

MLL

Munich 14 MV tandem accelerator

universität

⁵³Mn/⁵⁵Mn measurements with AMS

(AMS....Accelerator Mass Spectrometry)

MLL

Munich 14 MV tandem accelerator

universität

⁵³Mn - stable isobar ⁵³Cr

• GAMS.... Gas-filled Analyzing Magnet System

Isobar suppression: GAMS

- GAMS.... Gas-filled Analyzing Magnet System
- Principle:

Isobar suppression: GAMS

- GAMS.... Gas-filled Analyzing Magnet System
- Principle:

universität

Cr-suppression:

- Magnet: 10^3
- Ionization chamber: 10⁶

Reference Material

universität wien

universität wien

Reference Material

vien

len

Cr-blank: ⁵⁵Mn with 1000 ppm ⁵³Cr

ien

Cr-blank: ⁵⁵Mn with 1000 ppm ⁵³Cr

Cr-blank: ⁵⁵Mn with 1000 ppm ⁵³Cr

Results

Claudia Lederer

wien

Results

Claudia Lederer

universität

wien

Results

Vienna Environmental Research Accelerator

Thank you!