

• Aims: 1. 2.) measurement of the MACS of ³⁵ CI) production of a ³⁶ Cl/ ³⁵ Cl standard for AMS measurements	
• Methods:	neutron-irradiations activity measurements AMS-measurements	
• Motivation:	nucleosynthesis in stars production of ³⁶ Cl in nuclear facilities	
10.01.2011	ÖPG Tagung Salzburg	2

K 35 190 ms	K 36 342 ms	K 37 1.22 s	K 38 924.6 ms 7.6 m	K 39 93.2581	K 40 0.0117 1.28 : 10 ⁹ a	K 41 6.7302
y 2983; 2590 3p 1.425; 1.705; 1.555	у 1970; 2433; 2208 βр 0.970 0.693 βn 2.015; 2.725	β* 5.1 γ2796	β* 2.7 β* 6.0 γ 2108	α 2.1 α _{n, α} 0.0043 α _{n, p} <0.00005	β ⁻ 1.3; ε; β ⁺ γ 1461; σ 30; σ _{n, α} 0.42; σ _{n, p} 4.4	ır 1.46
Ar 34 844 ms	Ar 35 1.78 s	Ar 36 0.3365	Ar 37 35.0 d	Ar 38 0.0632	Ar 39 269 a	Ar 40 99.6003
β ⁺ 5.0 γ666; 3129 9	β ⁺ 4.9 γ1219; (1763)	գ։ 5 «ո, գ 0.0054 «ո, թ <0.0015	ε no γ σ _{n, α} 1080 σ _{n, p} 37	47 0.8	p=0.6 no γ α 600 α _{n, α} <0.29	ı r 0.64
CI 33 2.51 s	CI 34 32.0 m 1.53 s	CI 35 75.76	CI 36 3.0 · 10 ⁸ a	CI 37 24.24	CI 38 37.18 m	CI 39 56 m
β ⁺ 4.5 γ(841; 1966: 2867)	y 2127, 1175, 1000, gf 45 fy 145, no y	σ 43.7 σ _{n, α} -8.Ε-5 σ _{n, p} 0.44	σ <10 σ _{n.α} 0.00059 σ _{n.p} 0.046	σ 0.43	β 4.9 γ2168: 1642	β 1.9; 3.4 γ 1267; 250; 1517
S 32 94.99	S 33 0.75	S 34 4.25	S 35 87.5 d	S 36 0.01	S 37 5.0 m	S 38 2.83 h
σ 0.55 $σ_{0, 0}$ <0.0005	σ 0.46 σ _{0, α} 0.12 σ _{0, p} 0.002	o 0.25	β ⁼ 0.2 no γ	σ 0.24	β ⁼ 1.8; 4.9 γ3103	β 1.0; 2.9 γ 1942; 1746
P 31 100	P 32 14.26 d	P 33 25.34 d	P 34 12.4 s	P 35 47.4 s	P 36 5.6 s	P 37 2.31 s
σ 0.17	β ⁼ 1.7 no γ	β 0.2 n0 γ	β ⁼ 5.4 γ 2127	β 2.3 γ 1572	β γ 3291; 903; 1638; 2540	β γ 646; 1583; 2254
	©Karlsruh	er Nuklidkarte,	7 th edition 2006	, J. Magill; G. P	fennig; J. Galy	
10.01.2011		ÖF	G Tagung Salzł	burg		3

Irradiations at ATI and BRR						
ATI Vienna:	BRR:					
Two samples	Three samples					
 High flux (>10⁹cm⁻²s⁻¹) => irradiation time for wanted ³⁶Cl/³⁵Cl ratio is very short (30 s) Thermal neutrons and significant high epithermal neutrons-background which altars the ³⁶Cl/³⁵Cl ratio 	 Low flux (10⁷cm⁻²s⁻¹) => irradiation time ~1h Sharp, quasi monoenergetic neutrons (~5 meV, cold neutrons) 					
10.01.2011 ÖPG Tag	gung Salzburg 6					

		³⁶ Cl/ ³⁵ Cl [10 ⁻¹²]		Err [10 ⁻¹²]
	1	from Au activity measureme	nts	
BUD1			7.82	0.10
BUD2			10.54	0.13
BUD3			9.57	0.12
ATI2			5.25	0.08
ATI3			5.47	0.08
Tab.1: Results f	for the ³⁶ C	CI/35CI ratios from the activity me	asuren	nents of the Au-foils.
		σ _{MACS} [mb]	Err [mb]
FZK ³⁵ Cla		10.6		0.6
FZK ³⁵ Clb		8.8		0.5
Guber et al		11.0		0.3
Bao et al		11.7		

Conclusions				
 An independent stan produced. 	dard for AMS mea	surements was		
 Discrepancy of 20% b two FZK samples. To measurements on sample 	etween the MACS n clarify this discrepa es irradiated at KIT wi	neasured on the incy more AMS ill be performed.		
• The MACS measured on sample FZK ³⁵ Clb is 25% smaller than the other values. This would decrease the estimated stellar production of ³⁶ Cl by 25%.				
10.01.2011	ÖPG Tagung Salzburg	13		

