The suitability of ²³⁶U as an ocean tracer

R. Eigl^{1*}, G. Wallner¹, M. Srncik¹, P. Steier², S. Winkler² ¹Institute of Inorganic Chemistry, University of Vienna (*correspondence: rosmarie_eigl@yahoo.de) ²Isotope Research, University of Vienna, Austria

Introduction

²³⁶U is an α-emitter with a half-life of 2.3·10⁷ years. It does occur in nature, but only at ultratrace concentrations. Natural ²³⁶U/²³⁸U ratios in the range of 10⁻¹⁰ for uranium bearing ores have been reported in literature and ratios of 10⁻¹⁴ are expected for typical environmental samples. However, so far no widespread survey has been completed because levels are too low for routine detection by techniques other than AMS [1,2]. If the ²³⁶U/²³⁸U ratio is higher than 10⁻⁹, it can be assumed that the sample has been exposed to a significant (anthropogenic) neutron flux [2].

We measured sea water samples from two world oceans (Atlantic Ocean, Pacific Ocean), one marginal sea (Irish Sea) and one inland sea (Black Sea).

Formation of ²³⁶U

• ²³⁵U(n,γ)²³⁶U • ²³⁸U(n,3n)²³⁶U • ²⁴⁰Pu (α-decay)

²³⁶U can be formed by ²³⁵U(n, γ)²³⁶U and ²³⁸U(n,3n)²³⁶U reactions or as a result of growth from ²⁴⁰Pu already deposited on land by global fallout [4,5].

When thermal neutrons interact with ²³⁵U, the probability for fission is about 85%, whereas formation of ²³⁶U happens with a probability of 15% [3].

A great amount of ²³⁶U is produced as a by-product in nuclear reactors, also via the thermal neutron capture on ²³⁵U [4].

uranium isotope	natural abundance [3]
238 _{1 1}	00.070/

Estimated global inventory

natural ²³⁶U: ca. 30 kg
anthropogenic ²³⁶U: more than 10⁶ kg

The global inventory of natural ²³⁶U is assumed to be about 30 kg ²³⁶U in the upper layers of land surface and less than 0.5 kg in the oceans.

The anthropogenic inventory of ²³⁶U is in the order of 10⁶ kg, based on the assumption that the total uranium mined till 2003 adds up to 2.2.10⁹ kg and assuming 50% of the ²³⁵U were actually used up in reactors [3].

Chemical Procedures

The chemical procedure to the uranium extraction is based on the co-precipitation of uranium with Fe(OH)₃. 20µL of ²³³U spike [(4.76 ± 0.05)·10¹⁰ atoms ²³³U per g, IRMM-058; sample identification 0008] and 20 mL of Fe³⁺ solution (1 mg Fe³⁺/mL) are added to 2 L of the acidified (pH=2) water samples. After heating the sample solution for 6-8 hours, NH₄OH solution is added to adjust a pH of 8–9, which leads to the forming of a red brown Fe(OH)₃ precipitate. This precipitate is then dissolved in 3M nitric acid and uranium is extracted by a column filled with UTEVA[®] resin.

Targets for AMS are prepared by co-precipitation with $Fe(OH)_3$, calcination in a furnace and pressing the resulting oxides into aluminium sample holders, which are convenient for the use in the ion source of the AMS facility.

Accelerator Mass Spectrometry – AMS

AMS is well suited for the detection of heavy, long-lived isotopes, because it measures the isotopes directly rather than their infrequent decay and it is robust against interfering molecular isobars [6,7].

The Vienna Environmental Research Accelerator (VERA) was especially adapted for the isotope ²³⁶U and its lowest ²³⁶U/²³⁸U ratio reported on real samples is 5[.]10⁻¹² [7]. While previous measurements could identify ²³⁶U only in the vicinity of known contaminated sites (Sellafield, Chernobyl, etc.), our measurements in various compartments of the environment are evolving into a consistent picture of the dispersion of anthropogenic ²³⁶U.

Sample locations

Fig.: Schematic layout of the AMS facility VERA

Results

An isotopic ratio ²³⁶U/²³⁸U higher than 10⁻⁹ is a clear indicator for anthropogenic contamination. Thus, all samples were affected by human nuclear activity and the elevated ²³⁶U/²³⁸U levels are likely to result from contamination by global fallout [5].

Atlantic Ocean, Pacific Ocean and Black Sea revealed ²³⁶U levels on the same order of magnitude (10⁻⁹). For water from the Irish Sea, the detected ²³⁶U/²³⁸U isotopic ratio was much higher, showing obviously an influence by the Sellafield reprocessing plant [8,9].

sample	²³⁶ U/ ²³⁸ U	± 1σ
Atlantic Ocean, La Palma Island, Spain	1.87·10 ⁻⁹	5.62·10 ⁻¹⁰
Black Sea, Romania	3.63·10 ⁻⁹	4.89·10 ⁻¹⁰
Pacific Ocean, Hawaii, USA	5.74·10 ⁻⁹	3.07·10 ⁻¹⁰
Irish Sea	2.04·10 ⁻⁶	2.07·10 ⁻⁸

References

Conclusions

²³⁶U can figure as a valuable tracer in hydrology and oceanography and it is a key signature to differentiate uranium sources [10]. ²³⁶U has a long residence time of ~500,000 years in sea water and a sufficiently long half-life (2.3·10⁷a). The natural level is negligible compared to the measured anthropogenic ratios in all investigated seas. ²³⁶U is thus suitable as a tracer for the study of ocean dynamics on a global scale.

Compared to ¹³⁷Cs, where 10 L of sea water are required [11], we obtained our results for ²³⁶U on smaller sample sizes (< 2 L).

²³⁶U may also outperform the more established AMS isotope ¹²⁹I as an ocean tracer, for which the source term is generally restricted to the reprocessing plants and which undergoes more complicated environmental chemistry. Generally, the measurement of several tracer nuclides allows to address dilution and mixing processes.

- [1] Zhao, X.-L., Kilius, L.R., Litherland, A.E., Beasley, T., 1997. Nucl. Instrum. Methods Phys. Res., Sect. B 126, 297-300.
- [2] Buchholz, B.A., Brown, T.A., Hamilton, T.F., Hutcheon, I.D., Marchetti, A.A., Martinelli, R.E., Ramon, E.C., Tumey, S.J., Williams, R.W., 2007. Nucl. Instrum. Methods Phys. Res., Sect. B 259, 733-738.
- [3] Steier, P., Bichler, M., Fifield, L.K., Golser, R., Kutschera, W., Priller, A., Quinto, F., Richter S., Srncik, M., Terrasi, P., Wacker, L., Wallner, A., Wallner, G., Wilcken, K.M., Wild, E.M., 2008. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2246-2250.
- [4] Mironov, V.P., Matusevich, J.L., Kudrjashov, V.P., Boulyga, S.F., Becker, J.S., 2002. J. Environ. Monit. 4, 997-1002.
- [5] Sakaguchi, A., Kawai, K., Steier, P., Quinto, F., Mino, K., Tomita, J., Hoshi, M., Whitehead, N., Yamamoto, M., 2009. Sci. Total Environ. 407, 4238-4242.
- [6] Skipperud, L., Oughton, D. H., 2004. Environ. Int. 30, 815-825.
- [7] Steier, P., Dellinger, F., Forstner, O., Golser, R., Knie, K., Kutschera, W., Priller, A., Quinto, F., Srncik, M., Terrasi, F., Vockenhuber, C., Wallner, A., Wallner, G., Wild, E.M., 2009. Nucl. Instrum. Methods Phys. Res., Sect. B, 268, 1045-1049.
- [8] Srncik, M., Hrnecek, E., Steier, P., Wallner, G., 2011. J. Environ. Radioact. 102, 331-335.
- [9] Perna, L., Jernström, J., Aldave de las Heras, L., Hrnecek, E., de Pablo, J., Betti, M., 2005. J. Radioanal. Nucl. Chem. 263(2), 367-373.
- [10] Lee, S.H., Povinec, P.P., Wyse, E., Hotchkis, M.A.C., 2008. Appl. Radiat. Isot. 66, 823-828.[11] Povinec, P., 2010. J. Radioanal. Nucl. Chem. 286, 401-407.

Acknowledgement

This work was carried out in the framework of FWF project FWF P21403 (Gabriele Wallner).