Anthropogenic ²⁴⁴Pu in the Environment

S. Winkler^a, I. Ahmad^b, R. Golser^a, W. Kutschera^a, K.A. Orlandini^c, M. Paul^d, A. Priller^a, P. Steier^a and C. Vockenhuber^a

^a Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Vienna, Austria

^bPhysics Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

In 1960 Kuroda [1] suggested that 244 Pu ($\mathrm{t_{1/2}}=81\,\mathrm{Ma}$) was present in the early-solar system producing isotopic anomalies of xenon. The final proof for this hypothesis came from a measurement of xenon from spontaneous fission of ²⁴⁴Pu in the laboratory [2]. Although the detection of live ²⁴⁴Pu in nature has been reported in the same year [3], this finding is not unequivocally accepted. In particular, the question of possible contamination with man-made plutonium was raised. Due to the recent interest in detecting live ²⁴⁴Pu from the Interstellar Medium (ISM) [4], the question of the presence of anthropogenic ²⁴⁴Pu in the environment became of interest again. So far, two different ²⁴⁴Pu/²³⁹Pu isotope ratios have been reported from locations at low northern latitudes in the Central Pacific [4,5]. A ratio of 10^{-4} was measured in a deep-sea surface sediment from 5800 m water depth at 9°30' N, 174°18'W [4], and a ratio of 10^{-3} was found in manganese nodules from $5000\,\mathrm{m}$ water depth at $9^{\circ}18'$, $146^{\circ}03'$ W [5]. In order to better assess the 244 Pu fall-out on earth, we have started a program at VERA to measure ²⁴⁴Pu in surface sediments of Lake Michigan, routinely sampled for ^{239,240}Pu measurements. First results on the methodology of ²⁴⁴Pu detection were reported at the AMS-9 conference in Nagoya, September 2002 [6]. In the current contribution we report on measurements of ²⁴⁴Pu in Lake Michigan samples, with the goal to establish the ²⁴⁴Pu fall-out at a location where considerable information on fall-out of plutonium and other radionuclides exists.

Key words: ²⁴⁴Pu, AMS.

^cEnvironmental Research Division, Argonne National Laboratory, Argonne, IL 60439, USA

^dRacah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

1 Introduction

Some of the heaviest nuclides are produced in the astrophysical r-process. The production site mainly considered for the r-process are supernovae. If the supernova is close enough a deposition of nuclides on earth from the supernova ejecta and swept-up ISM can be expected [7]. In search of isotope signatures from such events only radionuclides are to be considered. The radionuclide has to be short-lived enough so that there is no primordial background from the formation of the solar system. On the other hand a long-lived radionuclide can accumulate in the ISM and make a higher contributions by means of swept-up matter by the supernova blast. The r-process yield of the nuclide is also of importance.

Accelerator Mass Spectrometry is a technique suited for measuring isotope signatures at the lowest levels. The detection of a 60 Fe [8] signature in a ferromanganese crust using AMS has spawned search for signatures in geological records from other radionuclides. Likely Candidates are 244 Pu [9], 182 Hf [10] and 247 Cm. A detection of 244 Pu together with a signal of 60 Fe would be an experimental indication that the r-process goes on in supernovae.

Apart from supernova-induced deposition, there has been an attempt to measure the steady-state flux of ²⁴⁴Pu from the ISM [4] in a deep-sea sediment. Since the surface layer of the sediment has not been removed before the chemical processing of the sediment, plutonium isotopes from athmospheric bombtesting were present in the sample material. In the AMS measurement 1 count of ²⁴⁴Pu was found. After comparision with the other plutonium isotopes it was concluded that this is compatible with fall-out from bomb tests.

2 Anthropogenic level of ²⁴⁴Pu

The neutron flux in a detonation of a nuclear bomb is able to produce considerable amounts of 244 Pu by multiple neutron capture on plutonium and uranium isotopes. While there are measurements of 244 Pu near test sites [11], the ambient level of 244 Pu from the stratospheric fall-out of the big atmospheric tests is still not known. The AMS measurement mentioned above [4] indicates a 244 Pu/ 239 Pu-ratio of $\sim 10^{-4}$. However, a measurement of 244 Pu manganese knodules [5] yielded a ratio of about $\sim 10^{-3}$.

	$^{240}{ m Pu}/^{239}{ m Pu}$	$^{241}{ m Pu}/^{239}{ m Pu}$	$^{244}{\rm Pu}/^{239}{\rm Pu}$	$^{239}{ m Pu}/^{242}{ m Pu}$
plates 1–8	$(1.73 \pm 0.03) \cdot 10^{-1}$	$(1.70 \pm 0.10) \cdot 10^{-3}$	$(2.67 \pm 0.09) \cdot 10^{-3}$	$(3.98 \pm 0.02) \cdot 10^{-2}$
plates 9–16	$(1.36 \pm 0.02) \cdot 10^{-1}$	$(1.71 \pm 0.09) \cdot 10^{-3}$	$(1.05 \pm 0.01) \cdot 10^{-1}$	$(3.71 \pm 0.02) \cdot 10^{-2}$
Table 1	•			1

The result of the measurement of sediment samples from Lake Michigan. Only statistical uncertainties are given.

3 Measurement of sediment samples from Lake Michigan

In order to solve this puzzle we have dedicated a beam-time (19–24 May 2003) at the Vienna Environmental Research Accelerator (VERA) to the measurement of plutonium isotopes from Lake Michigan Sediments. In our heavy ion AMS measurements we use a ToF spectrometer in combination with an ionisation chamber for energy detection [12]. The reported pile-up problem [6] has been solved by measuring the pulse-width of the detector pulses as well. The sample material has been spiked with ²⁴²Pu, therefore the fall-out contribution of this isotope could not be measured. As there was worry about getting enough counts of ²⁴⁴Pu eight electroplated samples were processed for a single sputter target.

We also measured two targets made from plates containing only 242 Pu spike material. We found $(1.3 \pm 0.4) \cdot 10^{-6}$ for the ratio of 244 Pu/ 242 Pu. As the sediment samples were prepared for α -counting they contain about the same activity of 242 Pu and 239,240 Pu. That means the spike material would in principle allow for measuring 244 Pu/ 239 Pu ratios down to 10^{-4} .

Together with the sediment samples a target of our in-house reference material was measured. The 244 Pu/ 242 Pu ratio of former measurements of this material was reproduced within statistics. From the yield of this target we obtain a detection efficiency of at least (the target was not used up) $6 \cdot 10^{-5}$.

Looking at the results of the sediment samples (see Tab. 1), one target (plates 9–16) was obviously contaminated by an electroplated sample containing ²⁴⁴Pu as spike material. It demonstrates the problem of obtaining samples suitable for measuring ²⁴⁴Pu, which is the result of the fact that up to now it was rarely looked for in nature.

The sample from plates 1–8 shows a 244 Pu/ 239 Pu ratio which is higher than expected for the global fall-out. The 240 Pu/ 239 Pu and 241 Pu/ 239 Pu ratios of this sample reproduce the typical values for the northern hemispheric stratospheric fall-out in this area $((1.73\pm0.02)\cdot10^{-1})$ and $(1.65\pm0.03)\cdot10^{-3}$ for 240 Pu/ 239 Pu and 241 Pu/ 239 Pu 1 [13]). Taking into consideration the 242 Pu/ 239 Pu ratio from

¹ corrected for decay to May 2003

fall-out plutonium ($(3.6 \pm 0.4) \cdot 10^{-3}$ [13]), the measured ²⁴⁴Pu/²³⁹Pu ratio of $2.67 \cdot 10^{-3}$ would be too high. This is most likely a result of contamination too.

The use of material prepared for other kinds of measurement is clearly unsatisfying, as there is usually no specification for ²⁴⁴Pu. The sample preparation has to be done specifically for the needs of the measurement of this rare isotope. A measurement of ²⁴⁴Pu from bomb-testing is best carried out by not using a spike at all as there is ²³⁹Pu as reference isotope. For the measurement of supernova-produced plutonium a spike of mass 236 with high isotopic purity seems to be the best option to trace the chemical yield.

4 Outlook

Our AMS system is now in a condition that makes it capable of measuring ²⁴⁴Pu at natural levels. Our next step is to measure a representative set of samples for the assessment of the global fall-out of bomb-produced ²⁴⁴Pu. This will also allow to further improve the AMS setup of VERA (e.g. efficiency) and to develop chemical sample preparation, which is necessary in order to investigate possible supernova-produced ²⁴⁴Pu in sediment cores.

References

- [1] P.K. Kuroda, Nuclear fission in the early history of the earth. *Nature* **187** (1960) 36–38.
- [2] E.C. Alexander, R.S. Lewis, J.H. Reynolds, and M.C. Michael. Plutonium-244: Confirmation as an Extinct Radioactivity. *Science* **172** (1971) 837.
- [3] D.C. Hoffman, F.O. Lawrence, J.L. Mewherter, and F.M. Rourke. Detection of Pu-244 in nature. *Nature* **243** (1971) 132–134.
- [4] M. Paul, A. Valenta, I. Ahmad, C. Berkovits, C. Bordeanu, S. Ghelberg, Y. Hashimoto, A. Hershkowitz, S. Jiang, T. Nakanishi, and K. Sakamoto. Experimental limit to interstellar ²⁴⁴Pu abundance. Astrophys. J. 558 (2001) L133-L135.
- [5] C. Wallner. Beschleunigermassenspektrometrie mit Supernova-erzeugten Aktiniden. PhD thesis, TU München, 2000.
- [6] S. Winkler, I. Ahmad, R. Golser, W. Kutschera, K.A. Orlandini, M. Paul, A. Priller, P. Steier, A. Valenta, and C. Vockenhuber. Developing a detection method of environmental ²⁴⁴Pu. Paper presented at the 9th International Conference on Accelerator Mass Spectrometry (AMS-9), 9–13 September 2002,

- Nagoya, Japan. Submitted to the proceedings, Nucl. Inst. and Meth. in Phys. Res. B.
- [7] J. Ellis, B.D. Fields, and D.N. Schramm. Geological isotope anomalies as signatures of nearby supernovae. *Astrophys. J.* **470** (1996) 1227.
- [8] K. Knie, G. Korschinek, T. Faestermann, C. Wallner, J. Scholten, and W. Hillebrandt. Indication for supernova produced ⁶⁰Fe activity on earth. *Phys. Rev. Lett.* 83 (1999) 18–21.
- [9] C. Wallner, T. Faestermann, U. Gerstmann, W. Hillebrandt, K. Knie, G. Korschinek, C. Lierse, C. Pomar, and G. Rugel. Development of a very sensitive AMS method for the detection of supernova-produced longliving actinide nuclei in terrestrial archives. *Nucl. Inst. and Meth. in Phys. Res. B* 172 (2000) 333–337.
- [10] C. Vockenhuber, M. Bichler, R. Golser, W. Kutschera, A. Priller, P. Steier, and S. Winkler. ¹⁸²Hf, a new isotope for AMS. Paper presented at the 9th International Conference on Accelerator Mass Spectrometry (AMS-9), 9–13 September 2002, Nagoya, Japan. Submitted to the proceedings, Nucl. Inst. and Meth. in Phys. Res. B.
- [11] H. Diamond *et al.* Heavy isotope abundance in the Mike thermonuclear device. *Phys. Rev.* **119** (1960) 2000–2004.
- [12] C. Vockenhuber, I. Ahmad, R. Golser, W. Kutschera, V. Liechtenstein, A. Priller, P. Steier, and S. Winkler. Accelerator mass spectrometry of heavy long-lived radionuclides. *Int. Jour. of Mass Spec.* 223–224 (2003) 713–732.
- [13] P.W. Krey, E.P. Hardy, C. Pachucki, F. Rourke, J. Coluzza, and W.K. Benson. Mass isotopic composition of global fall-out plutonium in soil, in: Transuranium nuclides in the environment, *IAEA-Proceedings* (1976) 671–678.