

Article

Subscriber access provided by Vienna University Library

Isotopic compositions of 236U and Pu isotopes in "Black Substances" collected from roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power Plant accident

Aya Sakaguchi, Peter Steier, Yoshio Takahashi, and Masayoshi Yamamoto *Environ. Sci. Technol.*, **Just Accepted Manuscript •** DOI: 10.1021/es405294s • Publication Date (Web): 06 Mar 2014 **Downloaded from http://pubs.acs.org on March 18, 2014**

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Isotopic compositions of ²³⁶U and Pu isotopes in "Black Substances" collected from 1 2 roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power **Plant accident** 3 4 Aya Sakaguchi^{1*}, Peter Steier², Yoshio Takahashi¹, Masayoshi Yamamoto³ 5 6 ¹Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 7 739-8526, Japan 8 ²VERA-Laboratory, Faculty of Physics, University of Vienna, Währinger Str. 17, A-1090 Vienna, 9 Austria 10³Low Level Radioactivity Laboratory, Kanazawa University, Ishikawa 923-1224, Japan 11 12 1314ABSTRACT 15 Black colored road dusts were collected in high radiation areas in Fukushima Prefecture. 16 Measurement of ²³⁶U and Pu isotopes and ^{134,137}Cs in samples was performed in order to confirm 17 whether refractory elements such as U and Pu from the fuel core were discharged, and to 18 ascertain the extent of fractionation between volatile and refractory elements. The 19 concentrations of ^{134,137}Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 20 MBq/kg, respectively. ²³⁹⁺²⁴⁰Pu was detected at low levels, ranging from 0.18 to 1.14 Bq/kg and 21 with high ²³⁸Pu/²³⁹⁺²⁴⁰Pu activity ratios of 1.64 to 2.64. ²³⁶U was successfully determined in the 22 range 0.28 to 6.74 x10⁻⁴ Bq/kg. The observed activity ratios for ${}^{236}U/{}^{239+240}$ Pu were in reasonable 23 agreement with those calculated for the fuel core inventories, indicating that trace amounts of U 24 from the fuel cores were released together with Pu isotopes, but without large fractionation. The 25 quantities of U and $^{239+240}$ Pu, emitted to the atmosphere were estimated as 2.3×10^9 Bq (150 g) 26 and 3.9x10⁶ Bq (580 mg), respectively. Regarding U, this is the first report to give a quantitative 27 estimation of the amount discharged. Appreciable fractionation between volatile and refractory 28 29 radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found. 30

- 31
- 32
- 33

34 INTRODUCTION

In the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, which occurred following 35 the Great East Japan Earthquake of March 11, 2011, large amounts of radionuclides, especially 36 volatile species such as 131 I (T_{1/2}=8.02 d), 134 Cs (T_{1/2}=2.06 v) and 137 Cs (T_{1/2}=30.2 v), were 37 released into the environment mainly from Units 1-3¹ of the plant. A possibility of radionuclide 38 emission from the spent fuel pool of Unit 4, which had been shut down since Nobember 2010, 39 has been discounted due to removal of fuel lods which commenced in November 2013. That is, 40 damage to the spent fuel rods has not been serious and there has been minimal contribution of 41 nuclide emissions from this source. Given this situation, there has been some public concern as 42 to whether U and Pu isotopes in fuel were discharged to the environment, because some mixed 43 U and Pu oxide fuel (MOX fuel) was used in Unit 3, and partial melt-down of the nuclear fuel 44 cores occurred in Units 1-3. Due to the difficulty of measuring U and Pu radionuclides, data on 45 the concentrations and the isotopic composition of U and Pu in the contaminated areas of 46 Fukushima have been limited²⁻⁷. Zheng et al. (2012, 2013)^{5,6} reported isotopic evidence for the 47 release of Pu based on ²⁴¹Pu/²³⁹⁺²⁴⁰Pu activity ratios in surface soil samples collected from the 30 48 km zone of FDNPP, where values were more than 100 compared with the global fallout value of 49 about 1.2 in March 2011. Yamamoto et al. (2012, 2014)^{4,7} also reported ²³⁸Pu/²³⁹⁺²⁴⁰Pu activity 50 ratios one to two orders of magnitude higher than the global fallout value of ca. 0.03, found in 51 surface soils from surrounding villages and towns. In fact, about a few % to 50% of ²³⁹⁺²⁴⁰Pu 52 found in these samples was estimated to have originated from the FDNPP accident, based on the 53 activities and/or atom ratios of Pu isotopes. As for U released from the fuel cores, ²³⁵U and ²³⁸U 54

have been measured on soil samples collected around the contaminated areas, but no anomaly 55 for ²³⁵U associated with FDNPP fallout was observed because of the presence of a much larger 56 quantity of natural U in soil². Uranium-236 ($T_{1/2}=2.342\times10^7$ y) is mainly produced via the 57 nuclear reaction 235 U(n, γ) by thermal neutrons in reactors which use 235 U fuel. Unambigous 58 detection of ²³⁶U from the FDNPP accident, however, has not yet been achieved. Although 59 Sakaguchi et al. (2012)³ measured this nuclide in seawater samples, an assessment of the source 60 was not possible. Thus, the characteristics of U and transuranic elements as refractory elements 61 and emitted from the FDNPP have not been fully characterised in the environment, even two 62 years after the accident. 63

Following the accident, road dust, blackish in color, has attracted the attention of citizens in 64 the Fukushima and Tokyo areas, the dust being given the name "Black Substances". The 65 material is composed of aerosol particles, asphalt and minute tire particles originating from 66 traffic, residue of dried lichens, soil and other fine-grained environmental debris. The dust, 67 which is blown by wind and rain into street corners and dips in the road, contains extremely 68 69 high levels of radionuclides. Since there is less of a contribution of natural U and global fallout 70 Pu in the matrix of these samples because of a reduced contribution of soil-derived materials, analysis of the road dust would seem appropriate for gaining new information on the isotopic 71 compositions of U and transuranic elements released from the FDNPP. 72

In this paper, we report the concentration and isotopic compositions of ²³⁶U and Pu isotopes 73 (half-lives: ²³⁸Pu 87.74 y; ²³⁹Pu 2.411×10⁴ y; ²⁴⁰Pu 6.563×10³ y), and ^{134,137}Cs, in Black 74 Substances from roadsides which are heavily contaminated by fallout from the FDNPP accident. 75 The aims of research are (1) to gain new knowledge on the levels and isotopic compositions of 76 the radionuclides released, (2) to compare values with those of nuclear fuel cores and further (3) 77 to evaluate the fractionation effects between the volatile and refractory radionuclides which 78 were released into the environment. Some focus is given to the measurement of ²³⁶U to clarify 79 whether U was released from the fuel cores. The present study serves as an aid not only to 80 predict the fate of U and Pu in the environment but also to estimate, accurately and precisely, 81 their inventories in the cores of the reactors. 82

83

84 MATERIAL AND METHODS

85 Sampling of road dust: "Black Substances"

The road dust samples were mainly collected from Minami-soma City and Namie Town from May to September, 2012 (Table 1 and Fig. 1). These regions were seriously contaminated by discharge of the radioactive plume due to the venting operations, hydrogen gas detonations and ⁸⁹ breaches of the containment vessel on March 12-15, 2011, followed by scavenging of the ⁹⁰ nuclides in the atmosphere by precipitation in the form of rain and snow. The sampling points ⁹¹ were located in the evacuation zone and show a relatively high radiation dose (>19 μ Sv/h) even ⁹² one year after the accident⁹. The collected substances were air-dried, and sieved through a 2-mm ⁹³ mesh to remove pebbles and plant debris, then pulverized in an agate-mortar for a few hours to ⁹⁴ obtain homogeneous samples. The homogeneity of sample has been confirmed in previous ⁹⁵ papers^{7,10}.

- 96
- 97

98 Measurement of radionuclides

99 ¹³⁷Cs and Pu isotope

Each sample (2-5g) was first packed into a plastic vessel of diameter 4 cm and height of 2 cm. 100 Then, ¹³⁴Cs and ¹³⁷Cs were determined by γ -ray spectrometry using a Ge-detector (Princeton 101 Gamma Tech, relative efficiency 40%) with measurement times of 600-1200 sec for each 102 103 sample. The spectrometer was calibrated with a standard of the New Brunswick Laboratory (NBL) reference sample No. 42-1 (4.04% uranium), analytical grade KCl and a standard γ -ray 104 reference sample for nuclides including ¹³⁷Cs from the JRIA (Japan Radioisotope Association). 105 In addition, the ¹³⁴Cs concentration was corrected for cascade summing. The detection 106 efficiency for ¹³⁷Cs (662 keV) was 5%, and the detection limit was 4.20 Bq for a 600 s 107 measurement. 108

After γ -ray spectrometric analysis, plutonium analysis was carried out radiochemically^{9, 10}. In 109 brief, an aliquot of 30-50 g of the sample was calcinated at about 450°C overnight and Pu was 110 leached twice with 250 ml of concentrated HNO₃ with a small amount of H₂O₂ on a hot plate, 111 with the addition of a known amount of ²⁴²Pu as a yield tracer. Plutonium was then separated 112 from the main matrix and purified carefully by passing through an anion exchange resin column 113 (diameter 1 cm x 10 cm height; Dowex 1-X8, 100-200 mesh). The purified Pu was electroplated 114onto a polished stainless steel disc, and activities (²³⁸Pu, ²³⁹⁺²⁴⁰Pu and ²⁴²Pu) were measured by 115 α - spectrometry. As the α -particle energies of ²³⁹Pu and ²⁴⁰Pu are nearly the same, these 116 nuclides could not be differentiated. Their activities were, therefore, presented as the sum 117 (²³⁹⁺²⁴⁰Pu) of ²³⁹Pu and ²⁴⁰Pu. The detection limit for Pu was 4.82x10⁻⁵ Bq for a 1 week 118 119measurement.

120

121 U isotope measurements

122 A portion (3-5 g) of the sample was decomposed with concentrated HF+HNO₃+HClO₄ (10 ml

soln. per 1 g sample) for 12 hours on a hot plate (150°C) with continual agitation. The total amount of solution leached was weighed and an aliquot was sub-sampled for determination by ICP-MS, of the total amount of 238 U leached. The remaining solution was used to determine the 236 U/ 238 U atom ratio by accelerator mass spectrometry (AMS).

Purification of U was conducted as described by Sakaguchi et al. (2009, 2010) 13,14 . For measurement of $^{236}U/^{238}U$ with AMS, the cathode was prepared as U oxides in a Fe₂O₃ matrix. Details of the measurements of ^{236}U with AMS are described in Steier et al. (2010) 15 and Sakaguchi et al. (2010) 14 . The detection limit is about 10⁴ atoms of ^{236}U . ^{238}U was measured using ICP-MS (Agilent 7700) after appropriate dilution with 2% HNO₃. In this case, indium was used as an internal standard.

133

134

135 **RESULTS AND DISCUSSION**

136 Radionuclide composition of Black Substances

The results of the Cs, U and Pu isotope measurements are shown in Tables 2 and 3. The 137 concentrations of ¹³⁴Cs and ¹³⁷Cs in all samples were exceptionally high, ranging from 0.43 138 to11.4 MBq/kg and 0.58 to 17.7 MBq/kg, respectively. These concentrations are two to three 139 orders of magnitude higher than those of surface soil collected from the areas within the 20 km 140 exclusion zone. These extremely high concentrations of radio Cs reflect a relative absence of 141 soil matrix components and the fact that the sampling area where is heavily contaminated with 142 radio Cs even at distance well removed from the FDNPP. Yoshida and Takahashi (2012)¹⁶ have 143 reviewed the reasons why a high radiation area exists far removed from FDNPP, and it is mainly 144due to the emission of highly radioactive plume combined with wet deposition associated with 145 rain on the 15th of March. The ¹³⁴Cs/¹³⁷Cs activity ratios covered a narrow range of 0.60 to 0.76, 146 depending mainly on the sampling date, and these values approached 1 when they were 147 decay-corrected to the date on 11 March 2011 as reported in METI (2011) and other 148 papers^{1,4,7,10,17,18}. 149

²³⁹⁺²⁴⁰Pu was detected at low levels in all the samples examined, ranging from 0.18 to 1.14 Bq/kg with ²³⁸Pu/²³⁹⁺²⁴⁰Pu activity ratios of 1.64 to 2.64. However, the concentrations of ²³⁹⁺²⁴⁰Pu are higher than those of global fallout observed in Fukushima. Actually, the typical concentration of global fallout ²³⁹⁺²⁴⁰Pu in surface soil of Fukushima^{4,7}, the samples being obtained from undisturbed and non-forested open flat land, is one to two orders of magnitude lower than other areas in Japan (about 1 Bq/kg)^{11,14,19}.

¹⁵⁶ The ²³⁸Pu activity concentrations in the Black Substances are well correlated with that of

²³⁹⁺²⁴⁰Pu (R=0.99), and their correlation slope, that is the ratio, is two orders of magnitude higher than the global fallout value of 0.03. These values agree well with those (2.0 ± 0.5) identified in several surface soil samples taken within the FDNPP site²⁰ and those calculated for the cores of Units 1-3 by the Japan Atomic Energy Agency $(2.30-2.92)^{21}$. Cleary, it is very important to point out that almost all Pu in the black dust samples was originats from the FDNPP accident.

 236 U was successfully measured in the range of (0.28 to 6.74) ×10⁻⁴ Bg/kg. The 236 U/ 238 U 163 atom ratios were in the range of $(0.25 \text{ to } 2.60) \times 10^{-7}$. For spent nuclear fuel, ratios above 10^{-3} are 164 typical. The uranium in Black Substances was obviously diluted with natural ²³⁸U in the 165 environment. The atom ratios are comparable with those in soil samples collected from Mogilev, 166located more than 200 km north of the Chernobyl Nuclear Power Plant²². But the usefulness of 167 this comparison is limited because of the difference in the ²³⁸U content of soil and Black 168 Substances. The observed ratios are clearly one to two orders of magnitude higher than those of 169 global fallout values found in surface soil in Japan^{13,14}. The activity ratios of ${}^{236}U/{}^{239+240}Pu$ were 170in the range of (1.96 to 18.4) $x10^{-4}$ with a weighted mean value of 7.87 $x10^{-4}$. This average value 171is about 7 times higher than that for the global fallout value for Japan^{13,14}. 172

Figure 2 shows a correlation of the concentration of the fuel burning products ²³⁸Pu and 173 ²³⁶U in Black Substances. The concentrations of ²³⁸Pu and ²³⁶U are linearly well correlated. This 174 implies that the deposited nuclides were well homogenized in the transportation process, or 175 there is mainly one or two sources. Figure 3 shows the relationship between the 238 Pu/ ${}^{239+240}$ Pu 176 and the ²³⁶U/²³⁹⁺²⁴⁰Pu activity ratios. The global fallout value is also plotted on this figure. 177 Sample no. 1, which was collected from close to the FDNPP (3.43 km), is far from the other 178 samples. The grey rectangle in Fig. 3 gives the one sigma (standard deviation) area of 179 ²³⁸Pu/²³⁹⁺²⁴⁰Pu and ²³⁶U/²³⁹⁺²⁴⁰Pu (except for sample no. 1). By taking into consideration fact that 180 the Pu in these samples was predominantly derived from the FDNPP, the ratios seem to 181 represent the ratios for ²³⁶U and ²³⁸Pu released into the environment as a results of nuclear 182 accident. The JAEA²¹ reported core inventories for each radionuclide calculated mainly by 183 using the ORIGEN2 code. By referring to those data, the ²³⁶U/²³⁹⁺²⁴⁰Pu activity ratios observed 184 in Black Substances show a relatively good correlation with the estimated core ratios: 3.63×10^{-4} , 185 3.66 $\times 10^{-4}$ and 2.84 $\times 10^{-4}$ (activity ratio) in Units 1, 2 and 3, respectively (Fig. 3). If we pay 186 attention to the details, the isotopic composition of U and Pu can be explained by mixing of core 187 materials and global fallout for nos. 9, 10 and 11. The extra sources which has (1) high 188 ²³⁸Pu/²³⁹⁺²⁴⁰Pu and high ²³⁶U/²³⁹⁺²⁴⁰Pu ratios and/or (2) low ²³⁸Pu/²³⁹⁺²⁴⁰Pu ratio but high 189 ²³⁶U/²³⁹⁺²⁴⁰Pu ratio such as a low reprocessing fuel with low or no burn up, can be predicted 190

from this graph (broken lines 1 and 2). However, confirmation of this hypothesis has not been found in this study. In any case, it is reasonable to conclude that trace amounts of uranium from the fuel core was released into the environment together with Pu isotopes without large fractionation.

195

196 Calculation of the amount of Pu and U released

Using the averaged ¹³⁷Cs/²³⁹⁺²⁴⁰Pu activity ratio observed in this study and the amount of 197 ¹³⁷Cs released to the atmosphere $(1.5 \times 10^{16} \text{ Bq})^1$, the amount of ²³⁹⁺²⁴⁰Pu released can be 198 estimated as 2.3×10^9 Bq. This value is smaller than that estimated by METI (6.4×10^9 Bq)¹. The 199 amount of ²³⁹⁺²⁴⁰Pu dispersed to the atmosphere is 3.8x10⁻⁵% of the total amount in the cores of 200 reactors 1-3²¹. In fact, this equates to about 590 mg of total plutonium (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu). Our 201 estimated values for the amount of ²³⁹⁺²⁴⁰Pu released from the core and the ratio of the released 202 ²³⁹⁺²⁴⁰Pu to the total amount in the core are close to the range of calculated values (1.0 to 203 2.4×10^9 Bq and 1.2 to 2.9×10^{-5} %) by Zheng et al. (2013)⁶, respectively. 204

In the same way, the amount of ²³⁶U released as a result of the accident was estimated 205 using the observed ${}^{236}U/{}^{239+240}Pu$ and ${}^{236}U/{}^{137}Cs$ activity ratio. The amount of ${}^{236}U$ released to the 206 atmosphere was about 1.2x10⁶ Bq. This is about 6.1x10⁻⁵% of the ²³⁶U inventories in cores 1-3 207 $(2.0x10^{12} \text{ Bq})^{21}$. This release ratio possibly applies also to the other uranium isotopes such as 208 234 U, 235 U and 238 U. From the uranium inventories in the cores 1-3²¹, the total amount of uranium 209 isotopes, ²³⁴U, ²³⁵U, ²³⁶U and ²³⁸U, dispersed in the atmosphere has been estimated to be about 210 3.9x10⁶ Bq. This equates to about 150 g of total uranium, which is four to five orders of 211 magnitude smaller than that of Chernobyl²³⁻²⁶. In the FDNPP, the enrichment ratio of ²³⁵U is 212 about 1.7 to 1.9% for each reactor, and is obviously different from that of natural ²³⁵U (0.72%). 213 However, relatively high concentrations of natural uranium in Japanese soil (about 1-3 ppm) 214 prevent identification of the ²³⁵U fingerprint of uranium contamination from the FDNPP 215 especially for the granitoid area in Fukushima. In this situation, ²³⁶U is very appropriate for 216 demonstrating anthropogenic uranium contamination in the surface environment. Summary for 217 the calculation of the amount of Pu and U released is shown in Table 5. 218

219

220 Estimation of fractionation factor between refractory and volatile elements

It is of interest to evaluate the fractionation factor between refractory (R) and volatile (V) elements. The R/V factor is often used to predict the fate of radionuclides in the environment²⁶ and is an essential parameter to estimate radionuclide dispersion as a result of the venting operations, hydrogen detonations and breaches in containment. Here, three categories of R/V factors were calculated based on the results for ¹³⁷Cs, ²³⁹⁺²⁴⁰Pu, ²³⁸Pu and ²³⁶U concentrations. The R/V factor are defined as:

227

228 R_{Pu}/V factor = (Measured (²³⁹⁺²⁴⁰Pu/¹³⁷Cs) in the environmental sample)/(inventory ratio of 229 (²³⁹⁺²⁴⁰Pu/¹³⁷Cs) in the reactor)

230 R_{Pu8}/V factor = (Measured (²³⁸Pu/¹³⁷Cs) in the environmental sample)/(inventory ratio of 231 (²³⁸Pu/¹³⁷Cs) in the reactor)

232 R_U/V factor = (Measured (²³⁶U/¹³⁷Cs) in the environmental sample)/(inventory ratio of 233 (²³⁶U/¹³⁷Cs) in the reactor)

234

²³⁹⁺²⁴⁰Pu/¹³⁷Cs (Bq/Bq), ²³⁸Pu/¹³⁷Cs (Bq/Bq) and ²³⁶U/¹³⁷Cs (Bq/Bq) in the core of Units 1, 2 235 and 3 were estimated using the calculation of Nishihara et al. (2012)²¹ (Table 4). From the 236 averages of these calculated values $(^{239+240}Pu/^{137}Cs=8.54x10^{-3}, ^{238}Pu/^{137}Cs=2.12x10^{-2}$ and 237 236 U/ 137 Cs=2.78 x10⁻⁶) and our measured data for each sample, the R/V factors were estimated to 238be nearly the same and in the range of (0.33 to 4.49) $x10^{-5}$ for R_{Pu}/V, (0.18 to 1.76) $x10^{-5}$ for 239 R_{Pu8}/V and (0.38 to 8.21) x10⁻⁵ for R_{II}/V . These R/V values are of the same order of magnitude 240 as data based on ²³⁹⁺²⁴⁰Pu/¹³⁷Cs found for surface soil/water samples contaminated with Pu 241 derived from the FDNPP^{3,4,7}. These R_{Pu}/V, R_{Pu8}/V and R_U/V values are clearly small, confirming 242 that a much larger amount of volatile nuclides such as Cs and I have been dispersed and 243 introduced into the surface environment compared to refractory elements such as U and Pu. 244

Surprisingly, the R/V factors, especially for samples with U and Pu isotopic compositions 245 inside the gray rectangle in Fig. 3, increased with distance from the FDNPP (Fig. 4). This 246behavior was unexpected, since the refractory elements in Chernobyl were emitted as larger 247particles, and consequently should have been deposited more quickly than the volatile elements, 248 which were emitted as gases and which accumulated on ambient aerosol particles with a typical 249 size of 0.1 to 1 μ m (accumulation or droplet mode²⁷). Here in our results, different fractionation 250 mechanism may operate to induce a preferential deposition of refractory elements at distances 251 further from the FDNPP. However, the gradient of the regression curve for R_{Pu8}/V is different 252 from that of $R_{Pu}(R_U)/V$. For two isotopes of the same element, ²³⁸Pu and ²³⁹⁺²⁴⁰Pu, fractionation 253in the deposition process is no valid explanation. In addition as shown in Fig. 2, fractionation 254 between ²³⁶U and ²³⁸Pu with the distance from the FDNPP is also not evident. Thus, it is 255 expected that the increase of this R/V factor with distance is governed by a different source. 256

However, from these preliminary results it would be premature to draw firm conclusions on the relationships observed in Fig. 4. Inclusion of more sampling sites, a higher time-resolution for the release history, different behaviors of the radionuclides after deposition and precipitation data could easily change the picture. In fact, no clear correlation between R/V factors, or with distance or precipitation has been found for a much larger data set for ²³⁹⁺²⁴⁰Pu/¹³⁷Cs in about 150 environmental samples including surface soil and Black Substance^{7,10}.

264 265266 **AUTHOR INFORMATION** 267 268 **Corresponding author** *Tel: +81-82-424-7463, Fax: +81-424-0735, E-mail: ayaskgc@hiroshima-u.ac.jp 269 270 Notes 271 The authors declare no competing financial interest. 272 273 **ACKNOWLEDGEMENTS** 274 The authors would like to express their gratitude to the City Councilor in Minami-Souma, Mr. K. 275 Oyama and research staff of the Low Level Radioactivity Laboratory, Kanazawa University, for 276 their valuable help with the sampling. This work was supported by the distribution mapping 277 project and a Grant-in-Aid for Scientific Research No.24110008 (Yamamoto 2012-2016) from 278 the Ministry of Education, Culture, Sports, Science and Technology, MEXT, Japan. 279 280 281 282 283 REFERENCES (1) Ministry of Economy, Trade and Industry, Data on the amount of released radioactive 284 materials, 2011. http://www.meti.go.jp/press/2011/10/20111020001/20111 020001.pdf 285 (accessed October 7, 2013, in Japanese). 286 (2) Takagai, M.; Nagahashi, Y.; Takase, T.; Shikino, O.; Kameo, Y. Isotope Ratio Analysis of 287 ²³⁵U and ²³⁸U Nuclide Using a Microwave Digestion Associated with ICP-MS and the Large 288 Areal Soil Survey Related to Fukushima Daiichi Nuclear Disaster. Bunseki Kagaku. 2011, 289 12, 947-957.(in Japanese) 290 (3) Sakaguchi, A.; Kadokura, A.; Steier, P.; Tanaka, K.; Takahashi, Y.; Chiga, H.; Matsushima, 291

A.; Nakashima, S.; Onda, Y. Isotopic determination of U, Pu and Cs in environmental

waters following the Fukushima Daiichi Nuclear Power Plant accident, *Geochem. J.* 2012,
46, 355-360.

- (4) Yamamoto, M.; Takada, T.; Nagao, S.; Koike, T.; Shimada, K.; Hoshi, M.; Zhumadiov, K.;
 Shima, T.; Fukuoka, M.; Imanaka, T.; Endo, S.; Sakaguchi, A.; Kimura, S. Early survey of
 radioactive contamination in soil due to the Fukushima Dai-ichi Nuclear Power Plant
 accident: with emphasis on Pu analysis, *Geochem. J.* 2012, *46*, 341-353.
- (5) Zheng, J.; Tagami, K.; Watanabe, S.; Uchida, S.; Aono, T.; Ishii, N.; Yoshida, S.; Kubota, Y.;
 Fuma, S.; Ihara, S. Isotopic evidence of plutonium release into the environment from the
 Fukushima DNPP accident. *Sci. Rep.* 2012. 2, doi:10.1038/srep00304.
- (6) Zheng, J. ; Tagami, K. ; Uchida, S. Release of plutonium isotopes into the environment
 from the Fukushima Daiichi Nuclear Power Plant accident: What is known and what needs
 to be known, *Environ. Sci. Technol.* 2013, 47, 9584–9595.
- (7) Yamamoto, M.; Sakaguchi, A.; Ochiai, S.; Takada, T.; Hamataka, K.; Murakami, T.;
 Nagao, S.; Isotopic Pu, Am and Cm signatures in environmental samples contaminated by
 the Fukushima Dai-ichi Nuclear Power Plant accident. *J. Environ. Radioact.* (available
 online)
- 309(8) Ministry of Education, Culture, Sports, Science and Technology, 2012, Mapping of radiatio310CsbyMEXT(revised in 12/Aug/2012)
- 311 http://radioactivity.nsr.go.jp/ja/contents/6000/5043/24/11555_0830.pdf
- 312 (accessed3/Feb./2014, in Japanese)
- (9) Ministry of Education, Culture, Sports, Science and Technology, 2012, Mapping of
 radiation dose by MEXT (revised in 12/Aug/2012),
 http://radioactivity.nsr.go.jp/ja/contents/6000/5045/24/5600 081218.pdf. (in Japanese)
- (10) Yamamoto, M.; Sakaguchi, A.; Ochiai, Imanaka, T. Isotopic compositions of
 transuranic nuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident: with
 emphasis on Cm isotopes. *J. Radioanal. Nucl. Chem.* (in press.)
- (11) Yamamoto, M.; Komura, K.; Sakanoue, M. ²⁴¹Am and plutonium in Japanese rice-field
 surface soils. *J. Radiat. Res.* 1983, 24, 237–249.
- (12) Yamamoto, M.; Tomita, J.; Sakaguchi, A.; Imanaka, T.; Fukutani, S.; Endo, S.; Tanaka,
 K.; Hoshi, M.; Gusev, B. I.; Apsalikov, A. N. Spatial distribution of soil contamination by
 ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu in the village of Dolon near the Semipalatinsk Nuclear Test Site: New
 information of traces of the radioactive plume from the 29 August 1949 nuclear test. *Health Phys.* 2008. 94, 328–337.

Page 11 of 21

Environmental Science & Technology

Sakaguchi, A.; Kawai, K.; Steier, P.; Quinto, F.; Mino, M.; Tomita, J.; Hoshi. M.; 326 (13)Whitehead, N.; Yamamoto, M. First results on ²³⁶U levels in global fallout. Sci. Total 327 Environ. 2009. 407, 4238-4242. 328 (14)Sakaguchi, A.; Kawai, K.; Steier, P.; Imanaka, T.; Hoshi, M.; Endo, S.;, Zhumadilov, 329 K.; Yamamoto, M. Feasibility of using ²³⁶U to reconstruct close-in fallout deposition from 330 the Hiroshima Atomic Bomb. Sci. Total Environ. 2010, 408, 5392-5398. 331 (15)Steier, P.; Dellinger, F.; Forstner, O.; Golser, R.; Knie, K.; Kutschera, W.; Priller, A.; 332 Quinto, F.; Srncik, M.; Terras, i F.; Vockenhuber, C.; Wallner, A.; Wallner, G.; Wild, E.M. 333 Analysis and application of heavy isotopes in the environment. Nucl. Instr. Meth. Phys. Res. 334 335 *B.* **2010**, *268*, 1045-1049. (16)Yoshida, N.; Takahashi, Y., 2012. Land-surface contamination by radionuclides from 336 the Fukushima Dai-ichi Nuclear Power Plant accident. *Elements* 2010, 8, 201-206. 337 Kato, H.; Onda, Y.; Teramage, M. Depth Distribution of ¹³⁷Cs, ¹³⁴Cs, and ¹³¹I in Soil 338 (17)Profile after Fukushima Daiichi 1 Nuclear Power Plant Accident. J. Environ. Radioact. 339 2012, 110, 59-64. 340 Endo, S.; Kimura, S.; Takatsuji, K.; Nanasawa, K.; Imanaka, T.; Shizuma, K. (18)341 Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear 342 Power Plant accident and associated estimated cumulative external dose estimation. J J. 343 Environ. Radioact. 2012, 111, 18-27. 344Ohtsuka, Y.; Iyogi, T.; Kakiuchi, H.; Takaku, Y.; Hisamatsu, S.; Inaba, J., Evaluation (19)345 of ²³⁹⁺²⁴⁰Pu, ¹³⁷Cs and natural ²¹⁰Pb fallout in agricultural upland fields in Rokkasho, Japan, 346 J. Radioanal. Nucl. Chem. 2004, 261,625-630. 347 (20)Tokyo Electric Power Company (TEPCO) (2011) Result on radionuclides measured in 348 soil within the site of Fukushima Dai-ichi nuclear power plant, Press Release March 28, 349 350 2011. http://www.tepco.co.jp/en/press/corp-com/release/11032812-e.html. 351 (21)Nishihara, K.; Iwamoto, H.; Suyama, K. Estimation of Fuel Compositions in Fukushima-Daiichi Nuclear Power Plant, JAEA-Data/Code 2012-018. 2012. 352 Boulyga, S. F.; Heumann, K. G. Determination of extremely low ²³⁶U/²³⁸U isotope (22)353 ratios in environmental samples by sector-field inductively coupled plasma mass 354 spectrometry using high-efficiency sample introduction. J. Environ. Radioact. 2006, 88, 355 1-10. 356 (23)Boulyga S. F.; Becker J. S. Determination of uranium isotopic composition and ²³⁶U 357 content of soil samples and hot particles using inductively coupled plasma mass 358 spectrometry. Fresenius J. Ana.l Chem. 2001, 370, 612-617. 359

360	(24)	Imanaka, T. Curr	ent Topics about the	e Radiological Cons	equences by the (Chernobyl		
361	Accident, Recent research activities about the Chernobyl NPP accident in Belarus, Ukrain							
362	an	d Russia.	KURRI	KR-139,	2002,	1-10.		
363	(http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr79/KURRI-KR-79.htm)							
364	(25)	Imanaka, T. What	happened at that tin	ne? Many-sided App	roach to the Reali	ties of the		
365	Chernobyl NPP Accident- Summing-up of the Consequences of the Accident Twenty Years							
366	Af	iter (II),	KURRI	KR-139,	2008,	1-19.		
367	(http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr139/KURRI-KR-139.htm)							
368	(26)	Izrael, Y.A. Radio	active Fallout after N	Nuclear Explosions a	nd Accidents, Rac	lioactivity		
369	in	the environment vol.	3, Series editor: Bax	ter, M.S., 2002, pp.	165. Elsevier.			
370	(27)	Seinfeld, J. H.; Pa	ndis, S. N. Atmosph	eric Chemistry and l	Physics: From Air	Pollution		
371	to	Climate Change, Sec	ond Edition, John W	iley and Sons, NY, U	JSA. 2006.			
372	(28)	Radke, L.; Hobbs	, P.; Eltgroth, M.W. S	Scavenging of aerose	ol particles by pre	cipitation.		
373	J	Appl. Meteol. 1980, I	19, 715-722.					

376

Table 1	able 1 Sampling locations of soil samples (Black Substances) including dust etc. collected mainly from the roadside								
Sample		Sampling	Position ((GPS data)	distance from	Location	Parmarka		
No.	Lab.ID	date	N	E	FDNPP (km)	Location	Remarks		
1	12N-7	22-Sep-12	37°27'12.8"	141° 00'40.6"	3.43	Futaba	Side of the parking area at Futabakousei hospital		
2	12N-17	22-Sep-12	37°28'02.4"	140° 55'51.0"	10.2	Namie	Roadsides (Route 253) in front of Matsunaga pottery		
3	12N-23	22-Sep-12	37°28'14.6"	140° 55'59.2"	10.19	Namie	Space under the eaves of Yasuragi nursing home		
4	12N-30	22-Sep-12	37°30'25.8"	140° 55'32.6"	13.11	Namie	Rooftop of a concrete house in Murohara (Route 114)		
5	12R-7	23-Apr-12	37°32'59.6"	140° 56' 04.3"	16.16	Minami-soma	Side of a road near Odaka-chiku (Kanaya)		
6	KURO-3	27-Mar-12	37°35'59.5"	140° 56' 21.5"	21.07	Minami-soma	Vicinity of the bsrvation deck of Yokokawa-damu		
7	12R-3	12-May-12	37°35'59.0"	140° 56'21.0"	21.07	Minami-soma	Vicinity of the bsrvation deck of Yokokawa-damu		
8	12K-12	5-Sep-12	37°33'23.0"	140° 52'27.7"	21.3	Minami-soma	Vicinity of the restricted area in Tetsuzan-damu		
9	12N-40	22-Sep-12	37°32'27.2"	140° 51'46.4"	19.74	Namie	Roadsides (Route 49) near Haranami tunnel		
10	12N-37	22-Sep-12	37°34'00.6"	140° 47'55.6"	26.01	Namie	Rear U-shaped drainageway at the milk consolidating station in Tsushima (Route 114)		
11	12K-18	6-Sep-12	37°33'34.0"	140° 45'39.9"	27.96	Namie	Roadsides (Route 114) before the checkpoint from Tsushima to Namie		
12	12T-20	26-Mar-12	37°38'58.7"	140° 45'20.4"	34.59	Iidate	Roadsides near Yamabe hall		

Table 2 The isotopic composition of Cs, U and Pu in Black Substances

		1				
Sample Lab code	Cs-134*	Cs-137*	U-238	U-236	Pu-239+240	Pu-238
No.	(kBq/kg)	(kBq/kg)	(ppm)	(10 ⁻⁴ Bq/kg)	(Bq/kg)	(Bq/kg)
1 12N7	1408 ± 5	2337 ± 5	0.880 ± 0.004	5.21 ± 0.27	0.284 ± 0.019	0.749 ± 0.034
2 12N17	3276 ± 11	5021 ± 13	0.570 ± 0.003	1.43 ± 0.07	0.239 ± 0.026	0.552 ± 0.044
3 12N23	11410 ± 38	17670 ± 43	0.390 ± 0.009	2.40 ± 0.11	0.482 ± 0.026	1.122 ± 0.051
4 12N30	1434 ± 4	2150 ± 4	0.380 ± 0.004	1.04 ± 0.05	0.180 ± 0.012	0.411 ± 0.019
5 12R-7	2103 ± 8	2957 ± 8	0.670 ± 0.018	2.51 ± 0.16	0.273 ± 0.013	0.516 ± 0.019
6 KURO-3	4361 ± 9	5706 ± 9	1.35 ± 0.02	6.74 ± 0.57	1.14 ± 0.069	2.333 ± 0.102
7 12R-3	1809 ± 7	2492 ± 7	0.650 ± 0.013	2.83 ± 0.07	0.703 ± 0.019	1.571 ± 0.032
8 12K12	1593 ± 5	2318 ± 5	0.630 ± 0.009	2.21 ± 0.07	0.420 ± 0.015	1.001 ± 0.027
9 12N40	3282 ± 9	5053 ± 10	0.620 ± 0.004	1.56 ± 0.12	0.663 ± 0.036	1.576 ± 0.071
10 12N37	636 ± 2	947 ± 2	0.330 ± 0.001	0.45 ± 0.02	0.196 ± 0.012	0.321 ± 0.016
11 12K18	1834 ± 5	2697 ± 6	0.480 ± 0.001	0.28 ± 0.01	0.145 ± 0.005	0.252 ± 0.011
12 12T20	426 ± 3	582 ± 1	0.470 ± 0.007	0.87 ± 0.05	0.218 ± 0.021	0.508 ± 0.024
* The university descent advected to the data of sounding						

* The values are decay-corrected to the date of sampling Error shows one sigma standard deviation from counting statistics

Table 3 The isotopic ratios use for Cs, U and Pu in Black Substances.

Sample , ,		U-236/U-238	Pu-238/Pu-239+240	Pu-239+240/Cs-137	U-236/Cs-137	U-236/Pu-239+240
No.	Lab. code	(10 ⁻⁷ atom ratio) (activity ratio)	(10 ⁻⁸ activity ratio)	(10 ⁻¹¹ activity ratio)	(10 ⁻⁴ activity ratio)
1	12N7	2.50 ± 0.13	2.64 ± 0.19	12.1 ± 0.81	22.3 ± 1.2	18.4 ± 1.6
2	12N17	1.06 ± 0.05	2.31 ± 0.27	4.75 ± 0.52	2.85 ± 0.14	5.99 ± 0.72
3	12N23	2.60 ± 0.10	2.33 ± 0.13	2.73 ± 0.15	1.36 ± 0.06	4.98 ± 0.35
4	12N30	1.16 ± 0.05	2.28 ± 0.16	8.36 ± 0.54	4.84 ± 0.23	5.81 ± 0.46
5	12R-7	1.58 ± 0.09	1.89 ± 0.11	9.24 ± 0.45	8.49 ± 0.54	9.17 ± 0.74
6	KURO-3	2.11 ± 0.17	2.04 ± 0.15	20.0 ± 1.22	11.8 ± 1.0	5.90 ± 0.61
7	12R-3	1.84 ± 0.02	2.23 ± 0.06	28.2 ± 0.76	11.4 ± 0.3	4.03 ± 0.14
8	12K12	1.48 ± 0.04	2.38 ± 0.09	18.1 ± 0.65	9.53 ± 0.30	5.26 ± 0.25
9	12N40	1.06 ± 0.08	2.38 ± 0.11	13.1 ± 0.71	3.09 ± 0.24	2.35 ± 0.22
10	12N37	0.57 ± 0.03	1.64 ± 0.11	20.7 ± 1.28	4.75 ± 0.21	2.27 ± 0.17
11	12K18	0.25 ± 0.01	1.73 ± 0.09	5.38 ± 0.19	1.04 ± 0.04	1.96 ± 0.10
12	12T20	0.78 ± 0.05	2.33 ± 0.14	37.4 ± 3.59	15.0 ± 0.9	3.98 ± 0.45

386

	Fu-239+240/CS-137	Pu-238/Cs-137	U-236/Cs-137	
No.	(10 ⁻³ activity ratio)	(10 ⁻² activity ratio)	(10 ⁻⁶ activity ratio)	
1	7.86	2.29	2.87	
2	7.54	1.79	2.59	
3	9.96	2.29	2.71	
Average	8.45	2.12	2.72	

sition of Unit 1 2 and 3 (Nichihar Table 4. The estimated or at al 2013)

	Fuel composition	Release to the atmosphere	Release ratio
	(Bq)	(Bq)	(%)
Cs-137	7.0x10 ¹⁷	1.5x10 ¹⁶	2.10
Pu-239+240	5.9x10 ¹⁵	2.3x10 ⁹	3.9x10 ⁻⁵
U-236	2.0×10^{12}	1.2×10^{6}	6.1x10 ⁻⁵
Total U	6.4x10 ¹²	3.9x10 ⁶ (150 g)	

Table 5 Summary of emission of Cs-137, Pu-239+240, U-236 and total U from FDNPP.

- Fig. 1 Sampling sites of Black Substances in Fukushima Prefecture and inventory of Cs-137 400
- $(Bq/m^2)^8$. 401

405 Fig. 2. Comparison between 238 Pu (Bq/kg) and 236 U (10⁻⁴ Bq/kg) in Black Substances.

407

Fig. 3 Relationship between ²³⁸Pu/²³⁹⁺²⁴⁰Pu and ²³⁶U/²³⁹⁺²⁴⁰Pu activity ratios obtained from Black
Substances together with the isotopic composition of global fallout in Japan and the cores in
each Unit (Units 1-3) of FDNPP. Grey square represent the area of one sigma (standard
deviation) of ²³⁸Pu/²³⁹⁺²⁴⁰Pu and ²³⁶U/²³⁹⁺²⁴⁰Pu values which were calculated excluding sample no.
Right graph is close-up of open square in the left graph.

415

Fig. 4 Relationships of R_{Pu}/V , R_{Pu8}/V and R_U/V factors with distance from FDNPP to sampling site (km). The solid symbols represent samples which are plotted in the grey square in Fig. 3. The open symbols show other samples in Fig. 3.

419