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Abstract. An overview of the past, present and future research activities at the CERN
neutron time of flight facility n TOF is given, with special focus on the astrophysical aspects.
During the first campaign (Phase I), neutron capture cross sections of relevance for several
aspects of the s-process nucleosynthesis have been measured. A second campaign has recently
started (Phase II), aiming at the study of the weak s-process component via accurate (n, γ)
measurements of the Fe and Ni isotopes. Some changes in the facility will allow us to perform
these measurements with improved experimental conditions.

1. Introduction

The n TOF installation [1] aims at the measurement of accurate nuclear data for the Accelerator
Driven System (ADS) project [2] and for nuclear astrophysics [3]. This facility combines a very
large flight path of 185 m with an intense neutron spallation source, thus yielding an excellent
energy resolution of 0.1% at 30 keV and a neutron intensity of more than 105 neutrons/pulse
in the 1 keV-100 keV range. More details about the performance and commissioning of the
installation can be found in Refs. [4, 5, 6]. In n TOF Phase I, the first beam time was devoted to
the further characterization of the resolution function [1], the ToF-neutron energy calibration [7],
the spatial beam profile [8] and the detailed study of the pulse height weighting technique [9, 10].
A summary of the astrophysically relevant measurements carried out in Phase I, between 2002
and 2004, can be found in Sec. 2. Due to radiation-safety issues at the spallation source area, a
new target has been constructed and the facility has resumed its activity in 2009. This upgrade
and the new experimental programme are briefly described in Sec. 3.

2. n TOF Phase I: measurements of astrophysical relevance for the s process

The list of isotopes measured in this phase at n TOF is listed in Table 1. Particular
emphasis deserves the measurement of a 151Sm (t1/2 = 93 years) sample, with a radioactivity
of 156 GBq, which was possible thanks to the high instantaneous neutron flux, low background
and very small duty-cycle of n TOF. Based on this experimental result, a detailed study of
the thermal conditions during the recurrent thermal pulses of low mass AGB-stars could be
performed [11, 12]. A detection system with reduced neutron sensitivity [13, 14] allowed the
accurate measurement of low cross sections, i.e. the Mg isotopes and closed neutron shell nuclei
(and neighboring isotopes) like Zr, La, Pb and Bi. The latters act as bottlenecks along the
s-process path, hence accumulating large abundances.

Nuclear Physics in Astrophysics IV IOP Publishing
Journal of Physics: Conference Series 202 (2010) 012026 doi:10.1088/1742-6596/202/1/012026

2



Table 1. (n, γ) measurements made during n TOF Phase I.

Isotope Astrophysically relevant aspects References

24,25,26Mg Isotopic anomalies in meteorites [15]
Strength of 22Ne(α, n) source

90,91,92,93,94,96Zr Weak/Main s process components [16, 17, 18]
Bottleneck at N = 50
95Zr branching sensitive to neutron flux

139La Indicator of s-process activity [19]
Bottleneck at N = 82

151Sm Branching of s-process path [11, 20, 12]
Thermal conditions of AGB stars

186,187,188Os Nuclear cosmo-chronology [21]
204,206,207Pb, 209Bi Termination of s-process path [22, 23, 24, 25]

Constraint for r-process model calculations
Bottleneck at N = 126

3. n TOF Phase II: s process in massive stars

Some aspects have been improved in the facility, particularly concerning the spallation source.
On one hand, the target is equipped now with the possibility to include a borated or heavy
water moderation layer, which will allow one to highly reduce the γ-rays produced by neutron
captures in the hydrogen of the moderator, thus improving the peak-to-background ratio in the
keV-MeV region by more than a factor of 5. On the other hand, the new spallation target
has been designed in such a way, that it may serve in the future as a common neutron source
for a second experimental area at a distance of 20 m. The latter would provide an increase in
sensitivity by two to three orders of magnitude.

Since May 2009 a series of measurements have been carried out for commissioning the
upgraded facility. The neutron flux has been determined from measurements with a micromegas
detector containing 10B and 235U deposits, from the 6Li(n, α) reaction measured with a silicon
array (SiMon) surrounding a thin Li-foil, and from the 235U(n,f) measured with a fission chamber
from PTB (Physikalisch-Technische Bundesanstalt) Braunschweig. An absolute value of the
neutron fluence at 4.9 eV was obtained from the 197Au(n,γ) measurement with the Total
Absorption Calorimeter [26]. A 2D-measurement of the spatial beam profile versus the neutron
energy has been carried out using micromegas detectors. The background conditions in the
experimental area will be characterized from measurements made with lead, graphite and empty
samples. Finally, the resolution function will be characterized from the measurement of a 56Fe
sample.

Table 2. (n, γ) measurements planned for n TOF Phase II.

Isotope Astrophysically relevant aspects

54,56,57,58Fe Prime s-process contributions to the galactic chemical
58,60,61,62,(63),64Ni enrichment and quantitative study of the weak s process

Nuclear Physics in Astrophysics IV IOP Publishing
Journal of Physics: Conference Series 202 (2010) 012026 doi:10.1088/1742-6596/202/1/012026

3



The weak s process has been found to be extremely sensitive to the neutron capture cross
sections of the isotopes near the seed distribution around Fe [27, 28]. Therefore, accurate (n, γ)
measurements on these nuclei will be the main goal of the present campaign (see Table 2).
Indeed, the neutron exposure during the weak s process is too small to achieve flow equilibrium,
which means that the cross section uncertainty on one isotope affects not only its own abundance,
but also the production of the subsequent higher mass isotopes. Due to this propagation effect,
it is important to measure the cross section of all involved Fe-group nuclei over a broad energy
range and with high accuracy [29].
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