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ABSTRACT. Bayesian sequencing of radiocarbon dates deals with the problem that in most cases there does not 
exist an unambiguous way to define the so-called prior function, which represents information in addition to the 
result of the radiocarbon measurements alone. However, a random choice of a particular prior function can lead 
to biased results. In this paper 'robust Bayesian analysis', which uses a whole set of prior functions, is introduced 
as a more reliable method. The most important aspects of the mathematical foundation and of the practical 
realization of the method are described. As a general result, robust Bayesian analysis leads to a higher accuracy, 
however paid for with a reduced precision. Our investigations indicate that it seems possible to establish robust 
analysis for practical applications. 
 
 
INTRODUCTION 
 
Motivation 
Bayesian sequencing has become a generally accepted and very successful tool to reduce the 
uncertainty of calibrated radiocarbon ages, when additional information (the so called prior 
information) about the temporal relationship within a series of radiocarbon dates from an 
archaeological stratigraphy exist. However, there is a well-known fundamental problem in 
applying Bayesian statistics: The prior information, which is the archaeological evidence in 
this application, is often not sufficient to unambiguously define a prior function. Nevertheless, 
in the standard approach, a specific prior function is selected in a canonical way. The gaps in 
the prior knowledge are filled with assumed information, which is intended to have no 
influence on the final result. This may, however, not necessarily be the case. A possible way 
to overcome this uncertainty is the use of various prior functions that are all in agreement with 
the archaeological information, and then unify the results; this is called 'robust Bayesian 
analysis'. 
After introducing the basics of Bayesian sequencing below, the idea of robust analysis will be 
described in detail. However, the actual realization of the method is not so simple as the 
principle idea suggests. Two main problems will be discussed in the paper: The need of 
discarding corrupt priors and how to deal with an infinite set of prior functions. A comparison 
of robust analysis with the usual sequencing is performed with the help of two specific 
examples. 
 
A remark to the used notation 
The basic method of Bayesian sequencing will be illustrated by the help of three different 
probability densities, denoted as prior function, likelihood function and posterior function, as 
described in detail below. In full notation these densities can be distinguished by their 
arguments, because the prior function is a probability density of the real ages p(t1,...,tn), the 
likelihood function is a conditional density of the radiocarbon ages (denoted x1,...,xn) at given 
real ages p(x1,...,xn⎪t1,...,tn) and the posterior function is a conditional density of the real ages 
at given radiocarbon ages p(t1,...,tn⎪x1,...,xn). However, for clearness sometime it is useful to 
simplify the arguments or omit them completely. To distinguish the different densities 
independently of their arguments we use the letter a to denote the prior function (from 



'a priori', which is the origin of 'prior'), l for the likelihood function and p for the posterior 
function. 
 
Basic description of Bayesian sequencing 
The basic single sample calibration in radiocarbon dating has a serious drawback. Depending 
on the shape of the calibration curve (e.g. for sections with large wiggles) the procedure may 
produce calibrated ages with high uncertainty. Fortunately in many cases a series of samples 
with various known relations between their ages deduced from the excavation site is 
available. Including this archaeological information within the calibration process by means 
of Bayesian statistics can improve the accuracy of the resulting ages. The procedure of 
Bayesian sequencing (or 'multi sample calibration' more generally spoken) is given in the 
following in its basic form. (Since the calculations are performed for the particular determined 
set of radiocarbon ages, a simplified notation without indicating the radiocarbon ages is used.) 
The method was introduced by Buck et al. (1991 and 1992) and is described in detail in Buck 
et al. (1996); a description focusing on the a practical realization is given by Bronk Ramsey 
(2009). Weninger et al. (2006) may be an adequate basic description for readers that are not 
familiar with the field. 
 
For a given set of samples, first - as in single sample calibration - each determined 
radiocarbon age is transformed into a probability density distribution for the real sample age. 
This distribution is called single sample likelihood function and characterizes the probability 
distribution for the real sample age, based only on the information from the measurements so 
far. (Exactly spoken this is only true under the assumption that any real age is previously 
equally probable. Actually, as mentioned above, the likelihood function is the conditional 
probability density to obtain a particular radiocarbon age if a sample of given real age is 
measured.) In the most simplified form (neglecting the error of the calibration curve and 
without taking account of standardization) the single sample likelihood function li is given by 
equation 1: 
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Where xi is the determined radiocarbon age of the i-th sample and σi its uncertainty; t is the 
unknown real age of the sample; c(t) gives the calibration curve. 
The single sample likelihood functions are combined to a multi-dimensional likelihood 
function l(t1,...,tn) that gives the probability density for any particular combination of the real 
sample ages t1,...,tn, still based on the measurements only; see equation 2 
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The available 'a priori' information from archaeology is introduced as a further n-dimensional 
function, the prior function a(t1,...,tn), which is the probability density considering exclusively 
the archaeological information now. 
The product of both gives the so called (multi-dimensional) posterior function p(t1,...,tn) (see 
equation 3) which finally gives the probability density for any particular sample age 
combination, now considering both the information from the radiocarbon measurement and 
the archaeological information (deduced e.g. from stratigraphy). 
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The probability distributions of the individual real sample ages, the so called marginal 
posterior densities pi(ti), are calculated by projecting the posterior probability to the individual 
sample co-ordinates, by integration over all other co-ordinates (excluding that of the sample 
actually evaluated), as shown in equation 4. 
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These resulting probability distributions can be, similar to the case of single-sample 
calibration, reduced to highest posterior density ranges (hpd-ranges) by collecting the most 
probable years until the required confidence level (e.g. 95%) is reached. 
Equations 1 to 4 are sufficient to perform Bayesian sequencing in its straightforward form. 
Although the numerical integration imposes some difficulties, because there are too many 
points in the multi-dimensional space even for a very low resolution grid, it can be performed 
well with the help of Monte Carlo methods. 
Frequently additional statistical parameters beyond the sample ages ti are used, mainly 
boundaries of archaeological phases. This can be implemented without difficulties, but will 
not be shown in this brief introduction. 
To perform our investigations we developed a program based on the mathematical language 
Matlab (by The MathWorks, Inc., Natick, Massachusetts), that runs the calculations by Gibbs 
sampling, which is a very basic Markov Chain Monte Carlo method; see e.g. Gilks et al. 
(1996) or Krause (1994). 
 
The simplified notation used here to demonstrate the method most clearly somewhat hides the 
Bayes theorem on which the method is based. The Bayes theorem - expressed above by 
equation 3 - looks as follows when given in exact notation (equation 5): 
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In this notation one can see that the likelihood function, which is the conditional probability 
density to get the set of radiocarbon ages for a given set of real ages, is converted into a 
conditional probability density for a set of real ages for given radiocarbon ages - what we are 
looking for - with the help of the prior probability density. Detailed descriptions of the Bayes 
theorem and statistical foundations can be found e.g. in Jeffreys (1961) (theoretical 
background) and in Sivia (1996) (easier to understand). 
 
 
THE AMBIGUITY PROBLEM AND THE BASIC IDEA OF 'ROBUST BAYESIAN 
ANALYSIS' 
 
A critical step within the procedure of Bayesian multi sample calibration is the transformation 
of the archaeological information into a prior function, which has to be a probability density 
in the real age space a(t1,...,tn). Usually the archaeological facts do not determine the shape of 
this function in an unambiguous way. This means for example, that a given set of time 
relations deduced from stratigraphy can be described by various differently shaped prior 
functions. A simple example can illustrate the nature of the problem: The knowledge that e.g. 
sample B is older than sample A is described correctly by both functions displayed in figure 1, 
which show the probability densities for the age difference age(B) minus age(A). 



 
  

Figure 1   Both prior func-
tions are in full agreement 
with the prior information 
that sample B is older 
then sample A. There is 
no way to prefer one of 
them based only on this 
information. 

 
One knows that age B must not be younger than age A, so the prior function has to be zero on 
the negative left part of the axis. But any shape of the function one chooses on the positive 
right side defines a particular probability density for any given age difference. This choice can 
not be based on available information, because it is only known that sample B is older than A 
and nothing more. However, the procedure of Bayesian sequencing as given above requires 
the use of one particular prior function. That means, that Bayesian modeling has to assume 
information that is actually without foundation. The problem is discussed e.g. by Steier and 
Rom (2000), Steier et al. (2001) and Bronk Ramsey (2000). 
It should be briefly mentioned here, that there are methods to find priors that bias the result as 
little as possible by reducing their unwanted information content. These priors are then called 
'non-informative' priors. One way to minimize unwanted information within a prior function 
is to characterize its non-informative behavior by an entropy measure (principle of maximum 
entropy; see e.g. Sivia, 1996). However, we do not follow this approach in the present work. 
 
A very general approach to deal with the ambiguity problem is the so-called robust Bayesian 
analysis. Robustness in Bayesian analysis has become a theoretically complex field. The 
theory (summarized e.g. by Berger, 1994 or Rios Insua and Ruggeri, 2000) is not finally 
settled, as there are ongoing developments and discussions, see e.g. Berger (2006). So we do 
not try to analyze the problem in a theoretical way, but only introduce the following particular 
concept to the archaeological application. 
The basic idea is to use a (theoretically infinite) set of prior functions including all possible 
shapes consistent with the available information (figure 2). The Bayesian calculations are 
performed with each prior function individually and the final result is the union of the 
individual results, exactly spoken the union of the highest posterior density ranges (hpd-
ranges) to a chosen confidence level. By this, one gets hpd-ranges for the sample ages that are 
valid for all possible prior functions and therefore independent of a subjective choice of a 
particular function. The meaning of these unified hpd-ranges is then a bit different from the 
usual hpd-ranges: The statement 'the age falls into the interval with a probability of 95 %' is 
changed to 'the age falls into the interval with a probability of at least 95 %'. Of course, the 
first statement for the usual interval is only true if the correct prior was used; the second 
statement for the interval from robust analysis is true if the correct prior was among the used 
set. 
 

  
Figure 2   The principle idea of 
'robust Bayesian analysis': Using 
all possible shapes of priors that 
are consistent with the available 
information: sample B is older 
than sample A. 



 
Although robust analysis is very simple in principle, there are some difficulties in the 
mathematical concept and also in the numerical methods that will be discussed in this work. 
Before entering into methodical and technical details, a comparison between usual sequencing 
and robust analysis by the use of a simple example shall clarify the reason why there is a need 
for improvement. 
 
 
AN ILLUSTRATIVE EXAMPLE: DATING THE ICEMAN AND HIS AXE 
 
In the year 1991 the famous, very well preserved body of an Early Bronze Age man was 
found in the European Alps on the Italian side near the Austrian-Italian border in the Ötztaler 
Alps, released by a melting ice shield. Samples from the body were radiocarbon dated at the 
AMS laboratories in Oxford and Zürich; see Hedges et al. (1992), Bonani et al. (1994). The 
actual value used in our work (see figure 3) is taken from Kutschera and Rom (2000), which 
is a combined age based on those data including tissue as well as bone samples. (A possible 
effect of inbuilt age in the bone samples is neglected for this example.) In the surrounding of 
the iceman various parts of his equipment were found and many samples were dated at the 
AMS lab in Vienna; see Rom et al. (1999); Kutschera and Müller (2003). 
To demonstrate the differences of usual sequencing and robust analysis, the direct dates of the 
iceman and the dates of the wooden shaft of his axe are evaluated with a simple model. The 
determined mean radiocarbon dates and their un-modeled calibration are shown in figure 3. 
 

  
Figure 3   Mean radiocarbon 
ages and the corresponding 
un-modeled calibrations of 
the iceman's body and of the 
wooden shaft of the axe. The 
calibration curve (Reimer 
et al., 2004) is given with two 
lines indicating the one-sigma 
precision band. 

 
If one accepts that the axe found close to the iceman was actually used by him, then the wood 
of the axe shaft cannot be younger than the iceman himself. Maybe one could get more 
detailed information by further archaeological analysis, which could then be used to construct 
an improved prior function: e.g. that an axe shaft typically may not be produced of very 
young wood, or similar considerations. But as such investigations have not been carried out 
by a qualified expert in this case, the only reliable prior information is the fact that the shaft 
has to be older than or of equal age as the iceman. 
 
Uniform prior: 
The simplest way to formulate the knowledge from above in functional form is the so-called 
uniform prior, which is zero for age combinations with wrong chronological order, and 
constant for all allowed cases: 
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It can be shown, that in this case where only two ages are involved the uniform prior implies 
also equal initial probabilities for all age difference taxe-tman, where taxe-tman ≥ 0 (correct 
chronological order). Assuming equal probability for any age difference seems reasonable 
(except for very large age differences) as there is no knowledge whether the shaft is made 
from young or old wood. However, there are theoretical aspects to favor decreasing functions 
(exponential, 1/x) as non-informative priors for positive definite numbers (see e.g. Jeffreys, 
1961). 
 
Uniform span prior: 
An alternative possible prior function results from the assumption that the ages of man and 
axe lie within a particular possible time span with unknown length. This time span is modeled 
by two outer boundaries (told and tyoung) and the prior function is constructed in such a way, 
that any age difference between these boundaries has the same initial probability. This prior 
function, denoted as uniform span prior in the following, is mentioned because in a 
generalized form it is the commonly used prior for conventional archaeological sequences 
(see Bronk Ramsey, 2001). It can be shown that its functional form is this: 
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Prior set: 
Our preferred approach is robust analysis. The finite prior set used as approximation for the 
infinite set of all possible functions is of the following simple form: 
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Where the parameter α steps through negative values simulating probabilities decreasing with 
increasing age difference with various slopes, and also through positive values simulating 
increasing probabilities. The uniform prior (α = ∞) is also included. 
Figure 4 gives a comparison of the outcome using the two different single priors with that of 
robust analysis. Always the hpd-ranges at 95.4% confidence level are shown. 
 

  
Figure 4   Comparison of the hpd-
ranges at a 95.4% confidence level 
resulting from two different single 
prior models (uniform prior and 
uniform span prior) and from 
robust Bayesian analysis. The un-
modeled calibrations are given as 
probability density distributions. 

 
The difference between robust Bayesian analysis and the use of a single prior can be seen 
most clearly when we consider the possibility that the axe shaft could be of the same age or 
only a few years older than the iceman. (This is included in our prior set for robust analysis by 
priors with α ≈ 10a or less.) In that case iceman ages at the oldest peak of the single sample 
calibration of the iceman are possible, because the un-modeled probability densities overlap 
considerably. In full accordance with this fact, robust analysis includes the oldest peak of the 
iceman's probability density within the 95.4% hpd-range. In contrast, when using the uniform 
prior, iceman ages at the oldest peak are misleadingly excluded, although the uniform prior 



seems a reasonable choice for this case as mentioned above. The result with the uniform span 
prior is a bit closer to that of robust analysis; the oldest peak is not excluded totally as with the 
uniform prior. However, the uniform span prior is still only one particular choice out of an 
infinite number of possible shapes, and so it can still exclude possible age bands, as indicated 
by the comparison with the result of robust analysis. 
Looking at this different results, one could get the impression that the results of Bayesian 
sequencing are in some way arbitrary and depend only on the choice of the prior. This was a 
reason for us to introduce robust analysis. But on the other hand, figure 4 also shows results 
which are independent from the choice of the prior: ages for the axe shaft younger than about 
3100 BC are not possible. Robust analysis preserves this common improvement of all 
Bayesian methods over single sample calibration. 
 
Remark: 'hpd-range envelopes' instead of probability densities 
The final result of robust Bayesian analysis is only available in the form of highest posterior 
density ranges (hpd-ranges). There are no resulting marginal posterior probability densities 
calculated, only the hpd-ranges for the various different priors are unified. However, density 
curves bear valuable information, and they are appreciated by the users of the method. We 
therefore have developed analogues curves for robust analysis: The unified hpd-ranges can be 
calculated for all confidence levels. Enveloping all these hpd-ranges results in a continuous 
function again, that offers information comparable with the marginal posterior density. This 
'hpd-range envelopes' are shown in figure 5 for the current example. 
 

 

Figure 5   Resulting 'hpd-range envelopes' from robust analysis of the iceman example. These curves 
(light gray) envelope the hpd-ranges at all different confidence levels. For clarification hpd-ranges to 
some particular levels (thin lines) are also given (thick lines). The black curves give again the un-
modeled probability densities as in figure 4. To avoid misunderstandings: The 'hpd-range envelopes' 
are not probability density distributions, they only show the limits of the hpd-ranges to a 
corresponding confidence level. 

 
 
DISCARDING INCOMPATIBLE PRIOR FUNCTIONS 
 
The idea of robust analysis in principle is the use of all shapes of priors that are consistent 
with the available information. The problem of this theoretical concept is that one can always 
find extremely shaped prior functions that, although still consistent with the given 
information, can 'damage' the result by producing posterior probabilities that are in 



disagreement with the measurements. This are usually priors which have a strong 'bias' for a 
specific result, essentially the opposite of the 'non-informative' priors mentioned above. E.g. if 
we take the iceman example, and assume a prior function that gives a very high probability 
density for age differences between 1000 and 1100 years (axe older than man) and very low 
probability for all other age differences, this prior forces the posterior of either the iceman or 
the axe shaft to lie far apart, completely out of the range obtained by un-modeled calibration. 
But still this prior is not in disagreement with the (only used) prior information that the axe 
shaft has to be older (or equal aged) as the iceman. Less artificial, even a prior decreasing 
exponentially with increasing age differences (as used in the example above) can damage the 
result if the slope is much steeper as consistent with the real, but unknown, historical 
situation. 
The literature suggests 'prior elicitation', i.e. manual identification and rejection of such priors 
from the prior sets, see e.g. Berger, 1994. However, we think that this is a error-prone and 
cumbersome procedure, which would prevent broad acceptance of the method. The manual 
rejection of priors could be used to 'tune' the result towards the expectations of the user, and 
thus introduces a unwanted subjectivity. We are looking for a more objective and automatic 
way to identify corrupt prior functions, focusing on the agreement of the prior with the 
measured radiocarbon ages (assuming that the radiocarbon measurements are correct). As a 
prerequisite one has to find a good measure for the agreement of model and data. This will 
typically be a so-called agreement index, i.e. a number calculated by some mathematical 
formalism, and a threshold for this number, below which the prior is rejected. 
Discarding corrupt prior functions is essential for using robust Bayesian sequencing in 
practice. However, it must not be ignored that this could be seen as a mutilation of the pure 
theoretical concept: the measured radiocarbon data now enters the mathematical procedure 
from two sides, through the reduction of the prior set and through the likelihood functions. 
Additionally, the choice of the agreement criterion and the threshold level could introduce 
again a subjectivity similar to the choice of the prior for the 'non-robust' multi-sample 
calibration. We thus have put significant effort into the development of this criterion. 
 
Measuring the agreement of model and data 
The most fundamental measure for the agreement of model (i.e. prior) and determined 
radiocarbon ages is the so-called prior predictive probability distribution, which will be 
shortly denoted as prior-prediction in the following. It occurs as 'standardization term' in the 
denominator in equation 5 - the Bayes theorem - and is given by the multi-dimensional 
volume (therefore denoted with v) of the product of likelihood and prior function: 
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The prior-prediction v(x1,...,xn) is the probability density to determine a particular set of 
radiocarbon ages for a given prior function a(t1,...,tn). In the specific application here, one is 
only interested in one particular value of v, that of the actually measured set of radiocarbon 
values. This value can be compared for different priors used. The ratio of the v-values gives 
the ratio of the probabilities to get the measured data for different a-priori probability 
densities for the real ages. This ratio is well known as Bayes-factor and established for model 
comparison (see e.g. Garcia-Donato and Chen, 2005), and has been already used for 
archaeological applications too (Jones and Nicholls, 2002). Priors with a higher information 
content (i.e. more stratigraphic information) are preferred against unspecific ones, since they 
are less likely to fit to the measured data by chance. 



Before we give the formalism to discard prior functions which do not agree with the data with 
the help of the Bayes-factor, an additional problem has to be solved: In practical applications 
of Bayesian sequencing technical difficulties arise. Often priors are used that are significantly 
different from zero on an unrestricted domain and thus cannot be standardized (they have an 
infinite integral). Examples are both the uniform prior and the uniform span prior mentioned 
above. From a theoretical point of view these priors are forbidden. However, the infinite 
domain does not affect the usual multi-sample calibration procedure, since the tails of the 
likelihood functions used in radiocarbon calibration decrease very fast to zero (essentially 
proportional to exp(-x2)). Therefore, unrestricted priors are used in almost all examples in the 
literature, and we have to be able to cope with them. However, a proper definition of their 
prior-prediction is impossible (the standard definition results in a factor of zero, i.e. they do 
not fit to any measured data). To circumvent the problem of standardization the integration 
could be confined to a restricted domain. Unfortunately, the prior-prediction obtained this 
way will depend (in indirect proportion) on the volume of this arbitrarily chosen domain. 
Our (disputable) approach to calculate the prior-predictions is to transform the unrestricted 
priors into standardizable ones, by multiplying them with a standardizable weighting function. 
This can be understood also as restricting the integration to a domain, but with gradual 
boundaries instead of sharp edges. The function should be significantly different from zero in 
the region where the radiocarbon measurements are situated, but should not extend much 
farther, since this will reduce the prior-prediction by increasing the 'domain'. Consequently, 
we use the sample ages measured, respectively their likelihood functions, to define the 
weighting function. The straightforward approach is to simply add all likelihood functions of 
the individual samples and use this as the weighting function for all coordinates. The total n-
dimensional weighting function λ(t1,...,tn) is given by equation 7 (in the following the 
simplified notation for the fixed set of determined radiocarbon ages, not indicating the 
radiocarbon ages explicitly, is used again): 
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Where li are the single sample likelihood functions as defined in equation 1. 
Since all priors can be standardized now and the prior-predictions can be calculated, it is 
possible to define an agreement factor B (which is a Bayes-factor as mentioned above) that 
describes quantitatively the agreement of model and data regarding to a reference prior aref; 
see equation 8: 
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∫vol ... dt means a volume integration over all age dimensions; a, aref and λ denote non-
standardized functions here, the needed standardizations are explicitly given in the equation. 
One can see that the prior functions a and aref need not to be standardizable any more, it is 
sufficient if a⋅λ and aref⋅λ have finite integrals, what is usually granted by the fast decrease of 
the likelihood functions. 
For the special case using a constant reference prior the agreement factor B is the Bayes-factor 
that compares the prior-prediction v(λ), calculated with a prior that combines the tested prior 
function with the weighting function, with the prior-prediction v(λ)

ref, using a prior that is the 



weighting function only. The value roughly spoken gives the increase (B>1) or decrease 
(B<1) of the probability to get the determined set of radiocarbon ages resulting from the use 
of the prior information. Therefore B is a good quantitative measure of the agreement of the 
prior function with the radiocarbon ages. 
To illustrate the potential of the agreement factor B we look at an ordered sequence of n 
samples, which are separated sufficiently in time so that the likelihood functions do not 
overlap. Again the constant function is used as reference prior, so for the constant prior B is 
equal one. If one tests the uniform prior for a sequence of samples (which is one for age 
combinations that are in the order given by the prior information, and zero elsewhere), then 
two results are possible: If the assumed prior order is in disagreement with the order of the 
radiocarbon ages, the agreement factor would be zero (for non-overlapping likelihoods). If the 
assumed prior order is in agreement with the order of the radiocarbon ages, the resulting value 
is the faculty of n. This result is reasonable, because 1/n! is the probability to get the right 
order by chance. 
It has to be acknowledged that the restriction of the domain by the function λ as given by 
equation 7 is not the only possible way. A different definition (e.g. including also all regions 
between determined radiocarbon ages) would lead to different results for the agreement 
factor B. However, we see no way to compare priors with finite and infinite integrals in an 
unambiguous way. 
It should be remarked, that there is a relation of the agreement factor B to an agreement 
measure used in the well-known program OxCal (Bronk Ramsey 1995, 2001, 2009): If one 
would use the normal multi-dimensional likelihood function as weighting function, by 
replacing λ with l (and still using a constant aref), B would become the same as 'Fmodel'. 
 
Finding a reasonable threshold level 
The threshold level of B for rejecting a model should be chosen relative to that of a model that 
is in good agreement with the real ages. A 'perfect' model per definition is one that knows the 
real ages of the samples and constrains the prior function sharply around them. Within this 
'perfect' model only the statistical variances of the measurements reduce the agreement factor. 
So one can use this case to get an estimate for the threshold of B so that the model is always 
accepted, except for a allowed percentage of statistical outliers. We estimate the threshold for 
the most simplest situation considering n samples, all with the same real age and measured 
with the same accuracy, generating a n-dimensional Gaussian likelihood function (assuming a 
linear calibration curve). The posterior function resulting from the 'perfect' model is a n-
dimensional δ-function at the position of the set of the real sample ages. For this simple case 
the corresponding agreement factor B, assuming a constant reference prior, can be analytically 
calculated and is denoted Bperfect: 
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xi are the measured radiocarbon ages with their common value of uncertainty σ; x(0) is the 
radiocarbon age corresponding to the common real age of the samples when assuming no 
measurement error. The sum in equation 9 is the well known chi-square distribution. 
Analogous to a conventional chi-square test, for a certain confidence level P (e.g. 95.4%), we 
obtain a corresponding threshold level. The threshold depends on the number of samples n: 
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So with Bthreshold a characteristic threshold level has been estimated that accepts models that 
agree with the real sample ages, in most cases of possible measured radiocarbon data sets. 
 
The actual applied agreement factor 
The power of using a Bayes-factor as agreement measure is the fact that it compares prior-
predictions that are absolute measures for the quality of a prior. Unfortunately this absolute 
character can be a disadvantage in practical applications. More often than not, there are 
outliers (beyond the statistical variance) in the radiocarbon measurements and/or mistakes in 
the model definition (e.g. a sample is misplaced in stratigraphy). Both would lead to a general 
decrease of the agreement factors (when defined with a constant reference prior) for all 
individual priors used, a behavior which is for sure correct. However, in our method, now 
more priors would be excluded (in the worst case, all), leading to an artificially small prior 
set. To bypass this problem one has to use a reference prior in the definition of the agreement 
factor (equation 8) that is as well inflected of the described faults but represents a model that 
is for sure not extreme, so that it should be discarded itself. Our approach is the use of the 
uniform prior (aunif) as reference prior, which achieves the mentioned requirements. So the 
actual applied agreement factor is denoted B(unif) and is given by equation 11 (according to the 
definition by equation 8): 
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The threshold defined in equation 10 is used unchanged for B(unif). This is reliable, because in 
the considerations to estimate a threshold level, the 'perfect model' was compared with the 
'neutral model' represented by the constant reference prior. In the actual applications all priors 
in the set have to agree with the given stratigraphic constrains, so that the uniform prior can 
be seen as 'neutral prior'. Naturally, this is just a rough estimate, because as pointed out 
clearly earlier in this work, whether the constant nor the uniform prior are really 'neutral' in 
the sense of carrying no information or only the information of the constraints respectively. 
However, the choice of the threshold cannot be objective anyway, we can only define a 
consistent procedure. 
The equations 11, 10 and 7 establish the needed system for discarding corrupt prior functions 
that would damage the result of robust Bayesian analysis. It should be noted that the 
definition of the agreement factor can be generalized for the use of additional statistical 
parameters like phase boundaries as well. 
 
An additional aspect that has to be mentioned shortly is the fact, that the numerical evaluation 
of the multi-dimensional volume integrals in equation 11 is not trivial. Actually, we were not 
able to find an applicable method in the literature. We thus developed a method based on a 
comparison of the volume to be estimated with a reference volume, executed by a modified 
kind of Gibbs sampling. The method is sufficient up to about thirty samples or dimensions, 
but gets convergence problems beyond that number. 
 
A tentative procedure for large sequences 
Due to the numerical problems mentioned above, for large sequences we tentatively base the 
criterion to discard corrupt priors on the single sample agreements indices, as described 
shortly: For the one-dimensional case l and λ are the same and (using the Bayes theorem; 
equation 5) equation 11 can be expressed as 
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where p and punif are the posterior functions. So for the one-dimensional case the degrees of 
overlap of likelihood and posterior function are compared. For the multi-dimensional case 
individual single sample agreement indices are defined analogously by using the single 
sample likelihood functions li and the marginal posterior densities pi (see equations 1 and 4): 
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(∫lipidt/∫lilidt is the usual definition of the single sample agreement index Ai, see Bronk 
Ramsey, 1995; the second part is canceled out in the equation above.) Similar considerations 
as above show that also for these single sample agreement indices the threshold from 
equation 10, evaluated for n=1, is reliable (i.e. √2/e2 for P=0.954 '2σ'). We accept a prior if 
none of the Bi

(unif) drops under that level. This has turned out to be more efficient than using 
an 'overall index' deduced from the individual agreement indices. However, the use of a 
single-sample-based agreement criterion is not what we finally intend, and it should be 
replaced by the multi-dimensional agreement factor (equation 11), as soon as we are able to 
calculate the latter for large sequences too. 
 
 
'PARAMETRIC PRIORS' AND 'MODEL AVERAGING' 
 
To perform robust Bayesian analysis, the calculations have to be performed individually for 
each function from a complete set of prior functions. Theoretically there is an infinite number 
of possible prior functions, but one can find ways to reduce the set to a practical manageable 
number (see chapter 'Second example: a large archaeological sequence'). However, it would 
be advantageous if there was a method that could make the use of an infinite prior set actually 
possible. The obvious idea is to use a set of prior functions of the same mathematical form, 
but generated by a set of free parameters. These parameters are then treated as additional 
dimensions within the formalism, simulating various shapes of prior functions by only one 
single evaluation of the posteriors. For example, a prior set with exponential decreasing 
probability densities for an age difference (a similar set with decreasing and increasing 
functions was used in the iceman example above) is generated by the following 
parameterization: 
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It can be shown, that Gibbs sampling with this parametric prior function leads to a summation 
of the posterior probability densities for all possible shapes of the prior function due to 
various parameter values, automatically weighted by the prior-prediction. So the method 
would have the potential to suppress corrupt shaped priors intrinsically by weighting them 
low. However, there are fundamental differences compared to the independent calculations 
for the various different prior functions. 
First, the generating parameters now need a prior function too. This brings along all the 
problems of the choice of a proper prior, e.g. that the result now depends on the scaling of the 
parameters, which changes with the form of the parameterization; e.g. 
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describe exactly the same set of functions, but give different results, when assuming a 
constant prior for the parameter α. 
And second, this approach is mathematically equivalent to the calculation with a certain, 
single prior, which can be obtained by integrating first over all prior parameters. While one 
could argue that this effective prior might now be better - less informative - than the 
commonly used priors, the search for non-informative priors is not the target of our research. 
The equivalence to a single prior can be seen as follows: 
The final posterior probability density p(t) when using a set of free prior parameters α, results 
from integrating the posterior density including the parameters p(t,α) (a probability density 
within the combined vector space of sample ages and prior parameters) along all parameter 
dimensions (projection to the sample age sub-space), see equation 12. (Once again the 
simplified notation without indicating the set of radiocarbon ages is used.) 
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Where p(t,α) results from the Bayes theorem: 
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So the final posterior function p(t) when integrating over the parameters results in: 
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Denoting the integral of the prior function along the parameters - which is a particular 
function in t again - as effective prior function aeff(t), the final posterior results from a single 
application of the Bayes theorem again: 
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Thus, calculation with parametric priors is equivalent to calculating with a single effective 
prior, and its shape depends only on the chosen kind of parameterization. 
 
Equation 12 can also be interpreted as a weighted sum of posteriors within the normal space 
of sample ages (when the parameters are not treated as statistical variables for the Bayes 
theorem), denoted as p(t)(t,α). The weighting factors are the prior-predictions within the 
normal sample age space, what can be seen as follows: 
In the sample age space the Bayes theorem can be expressed as: 
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Different from equation 13 there is no integration over the parameters, and the prior-
prediction remains parameter dependent. Combining equation 13 and 16 one gets: 
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Where v(t)(α) is the parameter dependent prior-prediction within the normal age space and v is 
the prior-prediction in the combined age and parameter space, which is a constant 
independent of α. So putting p(t,α) into equation 12 one gets equation 18, an integration over 
the individual posteriors weighted with v(t)(α): 
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It should be remarked here that this kind of weighted summation of the posteriors for different 
priors is in principle a method already used and denoted as 'model averaging' (see e.g. 
Hoeting et al., 1999). It can be seen as a kind of robust analysis, however, it has to cope with 
the a significant problem: Equation 18 shows clearly that the weighting depends unfortunately 
not only on the fixed value of v(t)(α) for a particular parameter set α, but also on the arbitrary 
definable scaling of the parameters, mentioned above: a change to another parameter set β(α) 
would require to introduce factors like ∂αi/∂βj to keep the integration constant; however, no 
such factors will be present if the set β is used from the beginning. 
 
So robust Bayesian analysis that wants to check actually all possible prior functions in our 
understanding has to calculate each prior function individually. Therefore we have to reduce 
the theoretical infinite prior set to a manageable finite one, which is shortly discussed within 
the archaeological example demonstrated next. 
 
 
SECOND EXAMPLE: A LARGE ARCHAEOLOGICAL SEQUENCE 
 
In this section robust Bayesian sequencing and the usual Bayesian method will be compared 
using a sequence taken from the article 'Chronology for the Aegean Late Bronze Age 1700-
1400 B.C.' by Manning et al. (2006). This large sequence, that links together related contexts 
of various sites, is very well documented and therefore highly suitable as an example. The left 
side of figure 6 gives the structure of the sequence in a slightly simplified illustration. The 
sequence consists mainly of four phases; some of them include substructures. Two tree-ring 
wiggle matches are used as terminus post quem (TPQ). The sequence includes about 100 
radiocarbon data; many of the shown ages of contexts are based on averages of several 14C 
data. 
One has to find a finite set of priors that is a good approximation to the theoretical infinite set 
of differently shaped prior functions. Although we yet do not have a general rule to find such 
a good and small prior set, the challenge seems to be manageable in practice. Often critical 
prior shapes that influence the result considerably are obvious. We want to note that in 
principle the final result of robust analysis is only a set of n highest posterior density ranges 
for n samples and parameters. Each interval limit is finally determined by only one single 
'extreme', but acceptable prior. If we ignore split hpd-ranges, 2n such extreme priors account 
for the complete result. Our task is thus not to calculate as many different, but redundant 
priors as possible, but to find these extreme priors. 



Considering the main structure of the sequence we put priors on the lengths of the phases. 
Similar to the iceman example above, exponential decreasing and increasing probability 
densities were used. It turned out to be sufficient to use only two different slopes of 
decreasing and two different slopes of increasing functions, and additionally the constant 
function for each phase length. A complete n-dimensional prior for the whole sequence is an 
arbitrary combination of these individual single-phase priors. So for five different slopes and 
four phases one would get 54 = 625 different total prior functions. Fortunately in practice it 
turns out that this number can be decreased considerable, because phases which are far from 
each other seem to behave fairly independent, so there is no need to try all respective 
combinations of their priors. This is at least the case for the two outer phases in this example. 
Additionally most of the effect of robust analysis apparently can be achieved by focusing on 
extreme combinations, as combing a prior with decreasing probability for a phase length with 
one with increasing density of the neighboring phase. By these considerations the prior set 
was reduced to 45 differently shaped prior functions, what made the calculation time 
manageable, although the computer program developed by us is based on the mathematical 
programming language Matlab and not optimized with regard to runtime, and therefore 
considerably slower than technically possible. Additionally the commonly used uniform span 
prior was also included in the prior set. 
As mentioned earlier the priors are sieved for their agreement with the measured radiocarbon 
ages. In this example 26 of the initial 46 priors where excluded by the agreement criterion. It 
is no disadvantage that a considerable number of prior shapes is discarded. If no prior would 
fail the agreement criterion, this could be an indicator that the prior set does not cover the full 
range of possible prior shapes, and the resulting hpd-ranges could be to small. 
The resulting hpd-ranges at 95.4% confidence level for robust Bayesian analysis and 
additionally that for the common uniform span prior are given in figure 6. 
When comparing the results of robust analysis with that of the uniform span prior alone, one 
can see that there are no considerable systematic shifts; the positions of the hpd-ranges are not 
changed in principle. This indicates that the choice of the uniform span prior does not produce 
a misleading result in general for this example. However, it is also obvious that most of the 
intervals become noticeable and sometimes considerable wider. For some contexts (e.g. 
'Trianda late LMIA twig' or 'Thera VDL') minor peaks within the un-modeled calibration, that 
are excluded with the uniform span prior, are included within the 95.4 % interval by robust 
analysis. The hpd-ranges of phase boundaries are generally changed more than that of 
contexts, because they are not so directly related to measured radiocarbon ages (e.g. 'Start 
Mature LMIA' or 'LMIB/LMII transition'). 
Even though the structure of the sequence is not too simple, the change of some hpd-ranges 
by robust analysis can be understood qualitatively. For example the Thera VDL has to be 
younger than the contexts in the preceding phase 'Pre-VDL LMIA'. Especially the context 
'65/N001/I2' within this phase is very young and so tends to shift the Thera VDL date to 
younger ages. On the other hand, the subsequent phase 'LMIB Destructions Crete', that starts 
earliest (with 95.4 % confidence) around 1650 BC when using the uniform span prior, forces 
the Thera VDL in the opposite direction towards older dates, which tends to compensate the 
shift from '65/N001/I2'. Robust analysis tries to consider all possible priors, and so also the 
case where the probability increases highly for very short lengths of the 'LMIB Destructions 
Crete' phase. Thus a very short 'LMIB Destructions Crete' phase has to start and end 
somewhere around 1530 BC where all un-modeled calibrations of the contexts within the 
phase overlap. But if the phase starts that late, it does not tend to shift the Thera VDL age 
towards older ages any more. So only the shift to younger ages remains and enhances the 
small tail - in detail two small peaks - at the young side of the un-modeled Thera VDL 
probability distribution, so that they are included in the resulting 95.4 % hpd-range. Thus, 
when focusing only on the 95.4 % (2σ) confidence level, the result for the Thera VDL from 



robust analysis differs remarkable from this using the uniform span prior. However, at the 
68.3 % (1σ) confidence level (we calculate the intervals at all levels of confidence 
simultaneously) the minor peaks are excluded again by both methods in common. 
Nevertheless, to avoid premature interpretations of this or any other detailed result of the 
sequence, one should be aware of the following fact: When evaluating the sequence with 
robust analysis we use in principle all possible prior functions that are in agreement with the 
constraints as given in simplified form on the left side of figure 6, without asking whether 
archaeological reasons could be found further that exclude a part of the particularly used prior 
functions within the used set. If we actually could exclude priors by further archaeological 
arguments (e.g. expectation values on some phase length or maxima for some time spans, 
etc.) this would naturally reduce the hpd-ranges. Therefore, robust Bayesian analysis forces 
the user to collect and use actually all available archaeological information, to avoid getting 
wider hpd-ranges as necessary. 
 
 

Figure 6   Second example: a large archaeological sequence taken from the article 'Chronology for the Aegean 
Late Bronze Age 1700-1400 B.C.', Manning et al. (2006). A comparison of the hpd-ranges at a 95.4% 
confidence level resulting from robust Bayesian analysis (bars in light gray) and from the usual uniform span 
prior (bars in dark gray) is given. The un-modeled calibrations are given as probability density distributions 
(curves in black). 
 



 
DISCUSSION 
 
For sure, we do not see the procedures introduced by this work as a completed method, we 
rather want to introduce ideas that are hopefully discussed within the community. Our view of 
what we consider to be the most critical aspects is summarized in the following. 
 
What is goal of our 'robust analysis', and what it is not: 
The idea is to avoid (or at least to reduce) the subjectivity of the chosen prior function for a 
given archaeological setting. This means, we assume that the archeologists came to a final 
description of the archaeological facts, which allows one to define a complete set of possible 
different prior functions that are all in agreement with this constraints. Our results are 
subsequently deduced from this set as described in detail in this work. Of course, this is an 
idealization of the real scenario, where the archaeological facts can hardly be fixed in an 
unchangeable form. Archaeologists will rather discuss the stratigraphy and find different 
possible interpretations and perspectives. They are able to assess different assumptions but 
can not assign quantitative probability values. To handle this complexity remains with the 
archaeologists. The goal of our method is not to deal with this part of the problem but to avoid 
the need of selecting a particular prior function, as there remain an infinite number of 
different possible functions, even when the archaeological constraints are fixed. 
However, the calculation of Bayes factors to compare models in an quantitative way, could 
support the selection of the archaeological model (the fixation of the archaeological 
constraints) too. Although, in our opinion, the archaeological constraints should better be 
defined based on archeological information only, without considering the measurements. 
 
What is the rigorous meaning of the resulting unified highest posterior density ranges: 
Usually in Bayesian statistics the result is expressed as posterior probability density, which is 
not possible any more within the method introduced here. Instead we use the unified highest 
posterior density ranges (unified hpd-ranges). Since these are not commonly used, it is 
important to elaborate there rigorous meaning very carefully: For given constraints based on 
the archaeological evidence, there is an infinite number of consistent realizations of the prior 
function, each resulting in different marginal posterior distributions. If we assume that the 
formulated archaeological constraints are correct, which means that there is no statement 
included that is not historical true, then the prior set will definitely include a function that 
correctly represents the actual probability to find samples of particular ages. This prior 
function would be the ideal choice to get an unbiased posterior density. To unify the hpd-
ranges of the posterior marginals for all priors guaranties that the hpd-ranges for the ideal 
prior are included. As the real sample ages lie within the hpd-ranges for the ideal prior with 
the corresponding probability (e.g. 95%), they lie within the unified ranges with at least the 
corresponding probability. So the meaning of the unified ranges is this: One can be sure that 
the real sample ages lie within those intervals with at least the specified probability. The 
conditions therefore are just that the archaeological constraints and the used accuracies of the 
measurements are correct. A similar statement is not possible if one uses a single particular 
prior, because one does not know how strong the result is biased by the prior. (The deviation 
from this ideal concept caused by the need of discarding 'corrupt' priors does not change the 
considerations here in principle.) 
The kind of robust analysis used by us is based on Berger (1994; section 1.3 and 4.1): The 
minimum and the maximum of a 'posterior quantity of interest' is calculated for a prior set to 
get a robust conclusion. When dealing with limits of hpd-ranges as in our case, we think that 
the union of all hpd-ranges is the straight forward implementation of this method. 



Finally it has to be remarked, that the use of hpd-ranges instead of probability densities has a 
little disadvantage: If the marginal posterior density is very flat, the excluded parts can have 
densities nearly as high as the included ones. However, this problem is not specific to robust 
analysis, it is present whenever hpd-ranges are used. Regardless of this, hpd-rages are highly 
accepted to characterize the results of Bayesian analysis. 
 
Is this emphasis on 'safe' results really necessary? 
It is disputable whether it is really necessary that the results have to be 'correct' in a rigorous 
sense as provided by robust analysis; or are results even meaningful although they may be 
biased by the choice of a particular prior function. Naturally, it is reasonable to look at results 
calculated with the best assumption for the prior function, but one has always to be aware that 
this results are only accurate if the prior function reflects the unbiased functional 
representation of the constraints given by the archaeological facts. The meaning of 'an 
unbiased functional representation' can be illustrated by the Iceman example from above. 
Imagine one would know the real ages (times of death) of a large number of Early Bronze 
Age men and the ages of the wood of the axes carried by them too. Now one could plot a 
point for each pair of ages within a two-dimensional co-ordinate system and fit the points with 
a corresponding probability density function. This density would represent an unbiased prior 
function, because now the prediction on the probability of a particular age difference of man 
and axe is the 'right' one. For sure in reality this density is not known, and therefore the use of 
a particular prior function usually biases the result. So deciding to use a particular single prior 
or robust analysis instead, is the decision between a high precision but also a higher risk of 
error and lower precision but a lower risk of error too. 
It should be noted, that the perception expressed by the example is not valid in general, 
because the actual probability for an event does not have to be based on a distribution of 
events (imaginary or not) in every case. 
 
The loss of a particular prior or 'model': 
It can be seen as drawback of the used method that one only focuses on the union of all priors 
and does not analyze the influence of the individual priors - which are usually seen as 
different models - on the result. First of all it should be remarked that the calculation 
performed by us provides all individual marginal posteriors to any prior used within the prior 
set. So it is possible to analyze the influence of individual priors on the result manually. Of 
course if there are hundreds of different prior functions used - which can be reasonable - this 
will become cumbersome. However, our perception of this topic is the following: We think, 
what should be actually seen as 'model' for this considerations is not the individual prior 
function, but the available archeological constraints or information. And, as pointed out 
earlier in this paper, this information can usually not be expressed by a single function, but by 
a set of prior functions. So the entirety of the prior functions characterizes the model, and 
therefore the result for this entirety has a more fundamental meaning than the results for the 
individual prior functions. 
 
The subjectivity of the finite prior set: 

In fact, it is a disadvantage of robust Bayesian analysis as performed by us, that the theoretical 
infinite set of possible prior functions has to be approximated by a finite set. This could lead 
to the impression, that the choice of the actual used priors brings in the subjectivity again, that 
the method tries to avoid. Fortunately the problem turns out to be solvable in practice, because 
one is allowed to include every prior one can think about within the set, if just consistent with 
the archaeological constraints. Neither redundant priors nor meaningless priors will (in 
principle) degrade the result. Naturally one can never fully exclude to miss priors or classes of 



priors that would influence the result, but even then the risk to get an incorrect result has been 
reduced. 
 
The arbitrary procedure for prior standardization: 
There could be the legitimate criticism that we use an arbitrary method to standardize prior 
functions with originally infinite integrals, for the purpose to be able to calculate Bayes 
factors. The problem is not easy to solve, because it is a fundamental one. It arises from the 
use of unrestricted priors that have no defined probability density values (their density would 
be zero anywhere, if standardized on the infinite domain). On the other hand, it would not 
make sense to discard unrestricted priors generally, because many archaeological constraints 
are most directly realized by this kind of priors. Thus, to do a quantitative model comparison, 
one has to restrict these priors in an appropriate way. This restriction will always have to be 
based on the available calibrated radiocarbon ages or on the likelihood function in other 
words. The particular way to realize this restriction is arbitrary in fact. However, it does not 
make a difference in principle if one defines a sharp domain around the likelihood or uses a 
'graduated domain' derived from the sum of all single sample calibrations, as we do in this 
work. 
Although it is not possible to avoid this arbitrariness, it is important to make clear, that it does 
only influence the process of discarding 'corrupt' priors (that are in serious disagreement with 
the data). The calculation of the posterior densities for the different priors used can be 
performed without standardization of the prior function. This is the benefit of our method 
where only the hpd-ranges are unified rather than the densities are summarized, which makes 
the result independent of a weighting of the individual priors. 
 
The problem with 'model averaging': 
We presented a detailed discussion in our work on defining a 'parametric' prior set and handle 
the parameters as additional dimensions within Bayesian calculation, which is a possible 
technical realization of an approach that is known as model averaging. Of course, this method 
has the great advantage, that it can be performed fully embedded in the Bayesian framework, 
resulting in marginal posterior densities for the original parameters (sample ages, boundaries, 
...) and for the prior parameters too. When starting our work we assumed that we will realize 
our goal with this method, which is mathematically well-defined and clear. It was not easy to 
accept a concept with discrete prior functions that have to approximate an infinite set of 
functions. However, 'model averaging' has its serious drawback too: The different functions 
have to be weighted now by a prior probability density for the parameters. In our opinion it is 
very difficult to assign well-grounded probabilities for differently shaped prior functions. This 
problem induces serious arbitrariness again and it is not possible to solve it pragmatically by 
postulating that all priors should have the same probability, because the chosen kind of 
parameterization (scaling) is an intrinsic arbitrary weighting anyhow. Aside from this 
complication the method delivers just an effective (or 'average') prior function, which again 
can be 'right' or 'wrong' in the sense that it can approximate well the unbiased functional 
representation of the constraints given by the archaeological facts or it does not (as illustrated 
by the example in 'Is this emphasis on 'safe' results really necessary?' above). 
However, we do not want to deny that model averaging is a meaningful method. The method 
assists powerfully the process of finding an appropriate average prior function and the 
posterior density of the prior parameters shows furthermore to which extend the individual 
prior shapes contribute to the average prior. So in our understanding, model averaging is a 
kind of robust analysis that is based on the principle of finding a non-informative prior 
function; an approach that is different in principle from that we favor in this work. 
 



 
CONCLUSION 
 
It seems obvious, that there are applications where usual Bayesian sequencing suppresses 
possible ranges for the real sample ages. These results from the use of a single, particular 
prior function, which is commonly not fully defined by the available archaeological 
information, and therefore is actually only one of various (infinitely many) different possible 
functional realizations of the prior information. Robust Bayesian analysis, that in principle 
considers all possible different shaped prior functions, could be a way to avoid these artifacts, 
thus leading to a higher reliability, even though paid for with a reduced precision. 
However, there are difficulties that have to be investigated further: Not completely solved is 
the problem that the use of 'corrupt' priors can destroy the result. Discarding the priors in 
respect to their agreement with the radiocarbon measurements by means of a threshold level is 
possible, but not finally satisfying, because this technique breaks the absolute objectivity of 
robust analysis again. A further difficulty is the fact that the calculations have to be done for 
each prior individually, so that only a finite number of prior functions can be considered. 
Fortunately it seems to be not difficult in practice to find a finite prior set that is a sufficient 
approximation for the theoretical infinite set of prior functions. 
In conclusion, we think that there are no unsolvable obstacles to establish robust Bayesian 
analysis as a safe sequencing method for radiocarbon dates which are related through 
archaeological evidence. 
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